Швейцарские инженеры научили квадрокоптер выполнять круговой оборот, удерживая при этом над собой незакрепленный шест. Демонстрационное видео доступно на YouTube.
Решение проблемы балансирования с шестом — частный случай проблемы обратного маятника. Обратный маятник отличается от классического тем, что его центр масс находится выше, а не ниже точки опоры. Из-за этого он нестабилен, и для его удержания в вертикальном положении опору необходимо постоянно двигать и подстраивать под положение маятника. Задачи, которые можно свести к проблеме обратного маятника, решаются во многих устройствах, например, в движении ракет, центр масс которых находится выше двигателя, или гироскутерах и подобных устройствах, которые управляются наклоном в ту или иную сторону.
Инженеры под руководством Рафаэлло Д’Андрэа (Raffaello D’Andrea) из Швейцарской высшей технической школы Цюриха, которые не первый год создают алгоритмы управления дронами, научили квадрокоптер не просто удерживать незакрепленный шест на месте или компенсировать небольшие толчки, но и совершать полный оборот, не роняя шест. Исследователи собираются опубликовать статью с подробным описанием алгоритма, а пока лишь отмечают, что он основан на применении линейно-квадратичного регулятора и расширенного фильтра Калмана. Исследователи опубликовали видео с коротким описанием и демонстрацией удачных и неудачных попыток дрона удержать шест во время кругового вращения:
В 2013 году эта группа исследователей научила систему из двух дронов удерживать шест и перекидывать его между собой:
Испытания квадрокоптера проходили на Арене для летающих машин — специальном помещении размером 10 на 10 на 10 метров, предназначенным для испытания летательных аппаратов, разрабатываемых инженерами высшей школы. Оно оборудовано высокочастотной системой позиционирования, которая может отслеживать положение аппарата с частотой до 200 раз в секунду. Ранее инженеры испытывали на этой арене и другие необычные беспилотники, например, дроны, налаживающие веревочную переправу, выдерживающую вес человека, асимметричный дрон с одним пропеллером, мультикоптер с роторами, направленными в разные стороны и дрон-кольцо.
Григорий Копиев
Он показал лучшее время на трассе, обойдя соперников на полсекунды
Инженеры разработали автопилот для гоночного дрона, управляющий беспилотником на уровне лучших людей-пилотов. Алгоритм под названием Swift, полученный с помощью метода обучения с подкреплением, способен управлять гоночным квадрокоптером, полагаясь только на данные бортовых сенсоров. В реальных полетах на тестовой трассе для дрон-рейсинга Swift смог превзойти трех профессиональных пилотов-чемпионов, выиграв у них 15 гонок из 25 и пройдя трассу с минимальным временем, которое на полсекунды меньше лучшего результата пилота-человека. Статья опубликована в журнале Nature. При поддержке Angie — первого российского веб-сервера Дрон-рейсинг — вид спорта, в котором мультикоптеры на высокой скорости проходят трассу, состоящую из последовательности ворот, через которые нужно пролететь за минимально возможное время. При этом управление происходит от первого лица, с помощью камеры и видеоочков. Современные дроны обладают очень высокой маневренностью и подвижностью: они могут резко менять направление движения, ускоряться, замедляться и совершать перевороты, а во время гонки они разгоняются до скоростей свыше 100 километров в час и подвержены перегрузкам, превышающим их собственный вес в пять раз. Это делает их пилотирование непростой задачей и требует хорошей подготовки и высокой скорости реакции оператора. Инженеры давно работают над созданием автопилота, который мог бы управлять дроном на уровне профессиональных пилотов. Помимо участия в дрон-рейсинге такая способность может пригодиться и в обычной жизни — мультикоптеры обладают невысокой энергоэффективностью, поэтому способность быстро летать и успешно маневрировать в окружении большого числа препятствий напрямую связана с успешностью выполнения задач. Инженеры под руководством Давида Скарамузза (Davide Scaramuzza) из Цюрихского университета уже имеют опыт разработки эффективных алгоритмов управления для дронов. К примеру, ранее они создали автопилот, способный управлять квадрокоптером на скорости от 3 до 7 метров в секунду в лесу между деревьев, полагаясь только на данные с бортовых сенсоров. В своей новой работе инженеры представили алгоритм под названием Swift. Он способен эффективно управлять гоночным квадрокоптером на уровне профессионального пилота дрон-рейсинга. Swift состоит из двух основных модулей: системы восприятия, которая переводит изображение от бортовой камеры дрона и данные от инерционного измерительного блока IMU в низкоразмерное представление, а также системы управления, которая принимает на вход низкоразмерное представление, созданное системой восприятия, и генерирует управляющие команды для электромоторов дрона. В модуль системы восприятия также входит алгоритм, вычисляющий текущее положение дрона в пространстве на основе данных камеры и инерционно-измерительного блока. Эта информация через фильтр Калмана объединяется с данными об относительном положении гоночных ворот, обнаруженных предварительно обученным нейросетевым детектором объектов в видеопотоке, после чего передается на вход системы управления, которая состоит из двух скрытых слоев, по 128 нейронов в каждом. Система управления тренировалась в симуляции с использованием модельно-свободного глубокого обучения с подкреплением. Этот метод обучения использует метод проб и ошибок, чтобы максимизировать величину параметра вознаграждения. В данном случае вознаграждение было максимальным в случае, если дрон следовал в сторону центра ближайших ворот таким образом, чтобы следующие ворота оставались в поле зрения камеры. Чтобы учесть различия между симуляцией и реальной динамикой полета, в процессе обучения информацию симулятора дополнили данными из реального мира, записанными с помощью системы захвата движений. Оценку автопилота провели на трассе для дрон-рейсинга, состоящей из семи ворот, установленных на квадратной площадке с длиной стороны 30 метров. Длина маршрута через все ворота составляла 75 метров. Алгоритм соревновался с тремя профессиональными пилотами Алексом Вановером (Alex Vanover), Томасом Битматтой (Thomas Bitmatta) и Марвином Шэппером (Marvin Schaepper). Все участники использовали гоночные дроны с одинаковыми характеристиками. Перед испытательными соревнованиями у пилотов была неделя для знакомства с трассой. В соревнованиях каждый из пилотов стартовал одновременно с дроном под управлением автопилота. Победителем становился тот, кто быстрее пролетит через все ворота на трассе в правильном порядке три раза. По результатам Swift смог выиграть у своих соперников в совокупности 15 гонок из 25, а также установил рекорд трассы, пролетев ее быстрее на полсекунды, чем остальные участники. https://www.youtube.com/watch?v=fBiataDpGIo&t=1s Инженеры разрабатывают гоночные автопилоты и для автомобилей. Например, инженеры из подразделения искусственного интеллекта компании Sony создали алгоритм автопилота GT Sophy, который с помощью обучения с подкреплением научился проходить за минимальное время трассы в гоночном автосимуляторе Gran Turismo Sport. В настоящих киберспортивных соревнованиях GT Sophy не только показала лучшее время в одиночных заездах, но и смогла победить команду лучших игроков в совместных гонках, набрав больше всего очков.