Исследователи из Швейцарской высшей технической школы Цюриха построили кольцо для повышения эффективности горизонтального полета квадрокоптеров. Демонстрационное видео опубликовано на YouTube.
Дрон под названием Flying Ring представляет собой квадрокоптер с кольцевым крылом. При передвижении в обычном режиме в закрытом помещении кольцо практически не влияет на качество полета и выполняет роль защиты роторов. В режиме горизонтального полета квадрокоптер становится «на ребро» и использует кольцо в качестве крыла с замкнутым контуром.
В экспериментах на специальной арене авторы экспериментировали с разным углом тангажа и смогли добиться стабильного горизонтального полета привязанного квадрокоптера на скорости 10,4 метра в секунду при тангаже в 81,5 градус. Авторы полагают, что такой подход поможет увеличить аэродинамическое качество. По их словам, квадрокоптер при традиционном горизонтальном полете обладает аэродинамическим качеством в районе двух, что сравнимо с эффективностью полета дрозофил, а кольцевое крыло обладает аэродинамическим качеством 12 (присутствие внутри крыла самого квадрокоптера снижает это значение, однако разработчики рассчитывают в будущем доработать дизайн летательного аппарата).
Это не первый мультикоптер, в конструкции которого была использована схема кольцевого крыла. На YouTube можно найти и другие подобные проекты, которые, как правило, выполнены на любительском уровне.
Flying Ring испытывался на специально созданной для подобных проектов арене, которая представляет собой кубическое помещение с гранью длиной в 10 метров. На арене установлена система управления беспилотниками, которая при помощи камер с частотой съемки 200 кадров в секунду может отслеживать перемещение нескольких объектов на скоростях до 10 метров в секунду. Ранее на этой же арене исследователи испытали однороторный асимметричный дрон и наладили веревочную переправу при помощи квадрокоптеров.
Николай Воронцов
Для движения ему достаточно одного актуатора
Инженеры разработали миниатюрного робота CurveQuad массой чуть больше 10 грамм. Его гибкий корпус деформируется за счет изогнутых складок и позволяет роботу продвигаться вперед, а также поворачивать, используя для этого только один актуатор. Разработчики продемонстрировали способность CurveQuad автоматически двигаться в направлении источника света, определяя его положение с помощью встроенных фотоэлементов. Текст доклада с описанием робота опубликован в рамках конференции IROS 2023. При поддержке Angie — первого российского веб-сервера Интерес инженеров к разработке миниатюрных роботов связан возможностью выполнять задачи в условиях ограниченного пространства. Например, миниатюрных роботов предлагают использовать для внутренней диагностики механизмов без их разборки, для разведки, и для обследования разрушенных в результате стихийных бедствий зданий в поисках выживших людей. Однако разработка роботов сантиметрового масштаба — непростая задача и ее решение требует множества конструктивных компромиссов. Более сложная походка, например, может добавить роботу проворности, однако одновременно с этим приведет к росту числа степеней свободы конечностей, а значит к увеличению количества используемых актуаторов. Это, в свою очередь, оборачивается усложнением конструкции, увеличением размеров, массы и энергопотребления. Одним из решений этой проблемы могло бы стать применение в конструкции элементов оригами или киригами. Складки упругого материала, выполненные с дополнительным изгибом, позволяют накапливать дополнительную механическую энергию, чем можно воспользоваться, чтобы сократить число актуаторов, необходимых для приведения робота в движение. Такой подход выбрали инженеры под руководством Синтии Сун (Cynthia Sung) из Университета Пенсильвании. Они создали миниатюрного робота под названием CurveQuad, который благодаря изогнутым складкам в конструкции оказался способен передвигаться с помощью всего лишь одного актуатора. Масса робота составляет 10,9 грамм, а ключевая деталь его корпуса представляет собой тонкую прямоугольную пластину из PET-пластика (полиэтилентерефталат) размером 80 × 55 миллиметров. В ней с помощью лазера выполнены прорези в виде последовательно расположенных полукругов, образующих паттерн в форме двух параллельных дуг с каждой стороны пластины, симметрично расположенных относительно центра. Материал в этих областях может легко изгибаться благодаря прорезям, создавая выпуклую и вогнутую складки. В центральной полосе обеих дуг на небольшом расстоянии друг от отдруга закрепляются концы двух «сухожилий» — тяг, которые соединяются противоположной стороной с концами рычага, закрепленного на сервомоторе, ось которого находится в центре пластины. Сервопривод может поворачивать рычаг в диапазоне 270 градусов, при этом «сухожилия», соединяющие концы рычага с корпусом, стягивают его вовнутрь, приводя к изгибам. В зависимости от угла поворота рычага корпус может из плоской пластины принять симметричную куполообразную форму. В этом положении концы пластины начинают играть роль четырех конечностей робота. В промежуточных положениях рычага сервопривода корпус несимметрично деформируется по диагонали. При этом передняя «конечность» приподнимается над поверхностью, а задние смещаются друг относительно друга. Из-за возникающей между ними разности в силах трения в этот момент корпус робота смещается вперед. Если затем такую же деформацию выполнить в противоположную сторону, то робот сделает второй шаг с помощью второй «ноги». Регулируя с помощью угла поворота рычага величину деформации, а следовательно и длину шага слева и справа можно управлять направлением движения робота CurveQuad. https://www.youtube.com/watch?v=RnSHG5F2Iek Для демонстрации возможности управления роботом с помощью обратной связи, инженеры установили на углах корпуса четыре фотоэлемента. Алгоритм сравнивает сигналы, полученные от сенсоров с левой и правой сторон, и в зависимости от того, с какой стороны сигнал больше, выбирает походку, которая поворачивает робота в этом направлении. В результате в каком бы положении робот ни находился изначально, он разворачивается на источник света и начинает двигаться в его направлении. В своей следующей работе инженеры планируют сосредоточиться на взаимодействии между несколькими роботами CurveQuad. Для этого они планируют добавить им возможность общаться друг с другом, чтобы роботы могли выполнять задачи сообща, например, вместе обследовать окружающую территорию. А вот другому микророботу, созданному группой американских и китайских инженеров, для передвижения не нужны сервомоторы. Вперед он движется под действием колебаний встроенной в его корпус пьезоэлектрической пленки, а повороты совершает за счет изменения силы трения между поверхностью и электростатическими площадками на концах передних ног.