Американские исследователи, которые разрабатывают подходы к исправлению мутаций в гене дистрофина при помощи CRISPR, описали еще одну эффективную систему возобновления синтеза этого белка в мышцах модельных животных. Для этого ученые разработали новую мышиную модель миодистрофии Дюшенна. Как сообщается в статье в Science Advances, экспрессия дистрофина в мышцах экспериментальных мышей достигла 90 процентов от нормы.
Нарушение синтеза белка дистрофина в результате врожденной мутации приводит к развитию прогрессирующей с возрастом миодистрофии Дюшенна, которая ведет к смерти больного в возрасте 20–30 лет. Вредные мутации встречаются в среднем у одного из 3600 мальчиков.
Ген дистрофина имеет сложную структуру и состоит из множества кодирующих кусочков — экзонов. Делеции в нескольких из них приводят к появлению в гене стоп-кодона и синтеза укороченного нефункционального белка. Исследователи выяснили, что восстановить синтез рабочей версии дистрофина можно, удалив кусочек с мутацией при помощи так называемого «пропуска экзонов» (exon skipping). Так как края экзонов содержат участки узнавания для белка Cas9 (PAM), вырезать мутантные экзоны достаточно удобно при помощи системы CRISPR-Cas9. О том, как это работает, мы уже рассказывали в другой заметке.
Исследователи из университета Техаса под руководством Эрика Олсена (Eric Olson) ранее опробовали подход с CRISPR для вырезания 51 экзона в гене дистрофина для устранения мутации, которая обуславливает 13 процентов случаев заболевания. В новой работе ученые сосредоточились на другом типе мутации — делеции в 44 экзоне гена. Эта мутация отвечает за 12 процентов миодистрофии Дюшенна у людей.
В предыдущем случае у ученых была возможность проверить систему на собаках породы бигль, у которых встречаются случаи миодистрофии из-за общей с людьми мутации. Однако на этот раз для проверки эффективности удаления 44 экзона авторам работы пришлось создать новую модель миодистрофии и вывести мышей с соответствующей делецией в геноме. Дистрофин в мышцах модельных животных не детектировался.
Подбор направляющей РНК для вырезания 44 экзона осуществляли на стволовых клетках, взятых у пациента с миодистрофией Дюшенна. Из отредактированных клеток затем выращивали клетки сердечной мышцы. Ученым удалось подобрать эффективную направляющую РНК на участок гена, который совпадает у мыши и у человека. Направляющую РНК и ген белка Cas9 вводили мышам в составе отдельных вирусных векторов. Как и раньше, ученые использовали аденоассоциированный вирус серотипа 9 (AAV9), который имеет наибольшее сродство к мышцам. Кроме того, экспрессия CRISPR-Cas9 была ограничена тканеспецифичными регуляторными элементами.
Вирусные частицы вводили животным в мышцу либо в кровь. Оказалось, что при системной доставке (через кровь) экспрессия рабочей формы дистрофина в сердце достигает 80 процентов от нормы. Когда же концентрацию вектора, содержащего ген направляющей РНК, повысили в 10 раз, количество дистрофина в сердечной мышце составило уже 90 процентов от нормы. Из этого эксперимента исследователи сделали важный вывод, что количество направляющей РНК влияет на экспрессию Cas9 и лимитирует эффективность редактирования.
Несмотря на высокую эффективность терапии, полученную на мышах, ученые признают, что для человека она может быть гораздо меньше, так как человек гораздо больше мыши и эффективность редактирования будет ограничиваться уже эффективностью вирусной доставки. Для единственного одобренного на сегодняшний день препарата, действие которого основано на том же принципе пропуска экзонов (этеплирсен), эффективность вырезания составляет менее одного процента.
Вспомнить, как работает система редактирования CRISPR-Cas9, можно в ролике «Увидеть CRISPR своими глазами».
Дарья Спасская
Это вывод рандомизированного исследования
Шведские, норвежские и британские ученые выяснили, что операция по реконструкции неба у детей с его расщелиной снижает риск органических нарушений речи в пятилетнем возрасте. Как сообщается в статье, опубликованной в The New England Journal of Medicine, к такому выводу ученые пришли после сравнения двух групп детей, получивших операцию в возрасте 6 или 12 месяцев. Изолированная расщелина неба поражает от 1 до 25 на 10000 новорожденных. В зависимости от типа и тяжести дефекта она может приводить к проблемам с кормлением, аномальному развитию и росту лица, психологическим трудностям, а также к нарушениям развития речи. Поэтому проводится хирургическая коррекция расщелины неба, которая заключается в закрытии промежутка между мягким небом и стенками глотки для разделения ротовой и носовой полостей. Это закрытие предотвращает орально-носовое сообщение, что обеспечивает сохранность давления воздуха внутри рта, достаточное для произнесения согласных.Однако несмотря на перенесенное хирургическое вмешательство, примерно у 30 процентов детей наблюдаются симптомы сохранения орально-носового сообщения, которое приводит к нарушениям речи. Многие хирурги считают, что дело во времени проведения операции, и что чем раньше она проведена, тем благополучнее дальнейших исходы относительно речи. Ученые из Швеции, Норвегии и Великобритании под руководством Кэррол Гэмбл (Carrol Gamble) из Ливерпульского университета провели рандомизированное клиническое исследование, в котором приняло участие 558 новорожденных: 281 были прооперированы в возрасте шести месяцев и 277 — в возрасте 12 месяцев. Исходные характеристики в обеих группах были сходными. Доля детей с недостаточно закрытым сообщением между ротовой и носовой полостями в возрасте пяти лет была значительно меньше в группе операции в шесть месяцев (отношение рисков 0,59, р = 0,04). Ассоциации сохранялись после поправки на протяженность расщелины и на хирурга. Нормальный лепет в возрасте одного года также чаще наблюдался в группе шести месяцев. Кроме того, в этом же возрасте функция среднего уха в 12-месячной группе оказалась хуже, чем в шестимесячной. В три и пять лет этих различий не наблюдалось. Таким образом, ученые приходят к выводу, что у здоровых в остальном детей предпочтительнее проводить операцию по коррекции расщелины неба в шестимесячном возрасте, чем в возрасте одного года. Ранее мы рассказывали про то, что ученые разработали накожный сенсор для мониторинга речи у пациентов, перенесших инсульт.