Светочувствительные бактерии превратили в интерактивный экран

Microfisica / YouTube
Итальянские исследователи создали экран, изображение в котором формируется с помощью светочувствительных бактерий и проектора, который выводит на экран негатив изображения. Принцип работы экрана основан на том, что бактерии двигаются быстрее в сильно освещенных областях и скапливаются в слабо освещенных областях. Статья опубликована в журнале eLIFE.
Ученые нередко используют бактерий в качестве основы сложных электронных устройств. К примеру, с их помощью удалось создать датчик кровотечения в кишечнике, напечатанную на бумаге солнечную панель и даже массив логических вентилей для обработки сигналов. Кроме того, некоторые исследователи научились рисовать бактериями. Обычно для этого применяют вещества, провоцирующие выработку пигментов или вызывающие другую пространственно-варьирующуюся реакцию, а некоторые исследователи использовали для этого облучение светом с разными длинами волн. Однако почти все эти разработки объединяет то, что изображение можно создать лишь один раз.
Роберто Ди Леонардо (Roberto Di Leonardo) и его коллеги из Римского Университета Ла Сапиенца создали экран с бактериями, позволяющий формировать в нем изображения с помощью облучения видимым светом и впоследствии менять это изображение. В основе системы лежат генетически модифицированные бактерии кишечной палочки, экспрессирующие светочувствительный белок протеородопсин. Благодаря этому белку облучение увеличивает скорость движения бактерий.
Поскольку бактерию можно рассматривать как случайно двигающийся объект, плотность размещения бактерий в пространстве обратно пропорциональна скорости движения. Другими словами, бактерии создают «затор» в областях с низким освещением. Из-за такой зависимости плотности от освещения исследователи решили проецировать на капилляр не само изображение, а его негатив. Благодаря этому бактерии скапливаются в областях, в которых интенсивность неинвертированного изображения высока.
Авторы также оснастили систему алгоритмом, который раз в 20 секунд проверяет реальное изображение, сформированное бактериями, и сравнивает его с образцом. После вычисления различий алгоритм создает немного измененную проекцию, которая должна приблизить реальное изображение к эталону.
В прошлом году американские ученые создали штамм кишечной палочки, реагирующий на красный, зеленый и синий цвета и вырабатывающий соответствующие пигменты. Таким способом ученые смогли создать несколько цветных изображений, в том числе прыгающего Марио из известной игры.
Григорий Копиев