Химики разработали фотоэлектрохимическую ячейку для расщепления воды на водород и кислород в условиях микрогравитации, и при этом доказали ее работоспособность, сбрасывая ее в экспериментальной капсуле со 120-метровой высоты. Оказалось, что предложенный ими элемент с нанотекстурированной поверхностью электрокатализатора позволяет отводить от электродов образующийся газ и не снижает эффективность даже в условиях невесомости, пишут ученые в Nature Communications.
Расщепление воды на водород и кислород с помощью солнечного света позволяет получать горючее газовое топливо. Именно с помощью такой реакции, проводимой в фотоэлектрохимических ячейках, ученые предлагают получать водородное топливо на космических кораблях, используя для этого энергию солнечного света. Однако до сих пор было непонятно, будут ли эти системы нормально работать в условиях невесомости, ведь образующий газ должен отводиться от электродов, чтобы не препятствовать дальнейшему поступлению катионов водорода. Если на Земле — при наличии силы тяжести (а соответственно, и силы Архимеда) — этот процесс происходит сам, то в условиях микрогравитации эффективность фотоэлектрохимических ячеек для расщепления воды может быть значительно ниже.
Химики из США, Нидерландов и Германии под руководством Ханса-Йоахима Леверенца (Hans-Joachim Lewerenz) предложили такую схему ячейки для расщепления воды под действием света, которая должна работать и в условиях микрогравитации. Основу ячейки составил электрокатализатор на основе родия, нанесенный через маску из полистирольных наносфер на поверхность светопоглощающего катода из фосфида индия. Благодаря использованию маски у этой поверхности появляется нанотекстура, которая заставляет образующиеся пузырьки отрываться от электрода, и они не препятствуют дальнейшему протеканию реакции. Также для ускорения отвода пузырьков газа от электродов ученые добавляли в раствор электролита на основе хлорной кислоты один процент изопропанола.
Для проверки работоспособности разработанной ячейки в условиях микрогравитации ученые провели эксперимент в капсуле (в ней находились и сама ячейка, и источник света), которую сбрасывали вниз со 120-метровой высоты в вакуумизированной башне. Во время падения в ячейке воспроизводились условия микрогравитации (с минимальным уровнем 10-6 g), общая длительность свободного падения составила 9,3 секунды. Для сравнения такой же эксперимент проводился с аналогичной ячейкой, но с плоским слоем электрокатализатора. Также обе эти ячейки были протестированы в условиях нормального земного притяжения.
Оказалось, что предложенная конфигурация действительно позволяет эффективно расщеплять воду в условиях невесомости. При этом работоспособность элемента сохраняется и при достаточно больших плотностях тока — вплоть до 16 миллиампер на квадратный сантиметр. Показатели аналогичной ячейки с плоским электрокатализатором оказались несколько хуже, но если в условиях земной гравитации плотность тока была лишь на несколько процентов ниже, чем для нанотекстуриованной поверхности, то в условиях микрогравитации она упала более чем в три раза.
Чтобы подтвердить механизм повышения эффективности электрохимического элемента за счет ускоренного отрыва пузырьков и большей скорости транспорта ионов, эту систему промоделировали численно с использованием кинетической транспортной модели, которая подтвердила полученные результаты. По словам авторов работы, полученные ими результаты доказывают возможность использования подобных ячеек в космосе, а разработанные методы в будущем позволят оптимизировать геометрию и точный состав фотоэлектрохимического элемента для подобных целей.
Как правило, для определения возможного влияния микрогравитации необходимо более долгое время, чем те несколько секунд, в течение которых капсула находится в полете. Поэтому для проведения более длительных экспериментов используются другие установки. Небольшие тестовые эксперименты можно проводить в специальных вращающихся камерах. Для проведения полноценных экспериментов в условиях микрогравитации установки отправляются на орбиту. Например, на борту МКС изучали растворимость таблеток в воде, а для исследования воздействия антибиотиков на кишечную палочку на орбиту Земли даже запустили отдельный микроспутник EcAMSat.
Александр Дубов
Она проходила в Цюрихе
Российские школьники выиграли три золотые и одну серебряную медаль на 55 Международной химической олимпиаде (IChO-2023). Золотых медалей удостоились 11-классники Никита Перов из Казани (он занял третье место в общем ранжированном списке) и Сергей Росляков из Москвы, а также 10-классник Вадим Харисов из Уфы. Серебряную медаль получил ученик 10-го класса Алексей Михеев из Алтайского края. Главным тренером сборной России был доктор физико-математических наук, профессор химического факультета МГУ Вадим Еремин, сообщает Министерство просвещения Российской Федерации. На Международной химической олимпиаде каждую страну может представлять четыре школьника или студента не старше 20 лет, то есть в этом году все участники от России заняли призовые места. А в прошлом году участники из России привезли домой четыре золотые медали.