Американские инженеры создали миниатюрного летающего робота, который получает энергию для полета из солнечной панели, освещаемой лазерным лучом. Благодаря этому он может летать без собственного источника энергии, сообщает IEEE Spectrum.
Обычно в качестве небольших летательных аппаратов рассматривают дроны, но, если стоящая перед аппаратом задача не заключается в перевозе грузов, даже типичный дрон может быть избыточно большим, тяжелым и дорогим. В качестве альтернативы дронам некоторые инженеры разрабатывают миниатюрных роботов массой менее грамма. Большого прогресса в этой области достигли инженеры из Гарвардского университета, разрабатывающие таких летающих роботов на протяжении нескольких лет. Они создали несколько вариантов робопчел, способных летать, прилипать к листьям, нырять и плавать под водой, а также выныривать из воды с помощью управляемого взрыва. Но у всех этих разработок есть недостаток, препятствующий их использованию — они получают питание по проводу, а создать для них достаточно мощный, емкий, а главное легкий источник питания пока сложно.
Инженеры под руководством Сойера Фуллера (Sawyer Fuller) из Вашингтонского университета создали похожего миниатюрного летающего робота, который не нуждается в проводах или аккумуляторе. На корпусе робота установлено два крыла, приводимые в движение пьезоэлектрическим актуатором. Для того, чтобы робот мог летать автономно инженеры установили над ним небольшую солнечную панель мощностью 250 милливатт. Поскольку она выдает ток с напряжением 7 вольт, а актуатору нужно напряжение 240 вольт, разработчикам пришлось создать миниатюрный повышающий преобразователь. Он и микроконтроллер для управления актуатором расположены на микросхеме в центре робота. Несмотря на то, что робот состоит из множества компонентов, создателям удалось сделать его крайне легким — 190 миллиграммов.
На демонстрационном ролике робот получает питание от лазерного луча. Поскольку пока инженеры не разработали систему нацеливания луча на солнечную панель, вскоре после взлета робот перестает получать питание и падает. Также пока что ограничено и расстояние передачи энергии. Во время испытаний разработчикам удалось поднять робота в воздух с помощью лазерного излучателя, расположенного в 1,2 метра от робота. В будущем они планируют увеличить это расстояние до десятков метров и разработать систему нацеливания луча на солнечную панель.
Системы беспроводной передачи энергии разрабатываются и для более крупных летательных аппаратов. Например, инженеры из NASA провели несколько испытаний беспилотных летательных аппаратов, получающих энергию для двигателей с помощью мощного наземного лазера. А «Роскосмос» работает над созданием системы лазерной передачи энергии в космосе. Предполагается, что она позволит большим аппаратам-заправщикам передавать энергию другим спутникам. В 2016 году ранний прототип системы прошел наземные испытания, во время которых излучатель передал энергию на расстояние полутора километров.
Григорий Копиев
Гексакоптер оснащен двумя взлетно-посадочными платформами для квадрокоптеров
Инженеры из Сколтеха разработали гибридный гексакоптер MorphoLander, который выступает в роли передвижного аэродрома для дронов меньшего размера. MorphoLander не только летает, но и может ходить по неровной поверхности при помощи четырех ног. В верхней части корпуса расположены две взлетно-посадочные платформы для микродонов. Дрон может пригодиться для инспекции объектов и поиска пострадавших во время стихийных бедствий, говорится в препринте на arXiv.org. При поддержке Angie — первого российского веб-сервера Дроны отлично подходят для выполнения задач поиска, инспекции и мониторинга, но потребляют много энергии и не могут долго находиться в полете. Одним из способов преодолеть это ограничение стала разработка дронов гибридной конструкции, которые могут не только летать, но и передвигаться по земле, например, с помощью колес или ног. Несмотря на то, что такой подход позволяет продлить время работы за счет менее энергозатратного способа передвижения по поверхности, продолжительность полета гибрида и его эффективность часто снижается из-за дополнительного веса. Инженеры под руководством Дмитрия Тетерюкова (Dzmitry Tsetserukou) из Сколтеха предложили использовать громоздкий дрон в качестве носителя для дронов поменьше. Тогда большой дрон выступает в роли передвижного «улья», который в нужный момент выпускает рой маленьких дронов, способных более эффективно выполнить задачу на большой территории за счет совместной работы. Разработанный прототип под названием MorphoLander представляет собой гексакоптер с четырьмя ногами, каждая из которых имеет три степени свободы. С их помощью дрон может передвигаться по неровной поверхности. Масса гибрида немного больше 10 килограмм. Встроенного аккумулятора хватает на 12 минут полета. Сверху на корпусе закреплены две посадочные платформы диаметром 20 сантиметров, на которые могут садиться микродроны. Чтобы микродронам (инженеры использовали Crazyflie 2.1 массой 27 грамм) было проще садиться на MorphoLander, материнский дрон с помощью алгоритма стабилизации старается удерживать горизонтальное положение платформ, подстраивая высоту ног под неровности поверхности. Посадка микродронов происходит под управлением алгоритма машинного обучения, его обучение с подкреплением проходило в симуляторе на платформе игрового движка Unity, который позволяет имитировать физику, с использованием пакета машинного обучения Unity ML Agents. Обученный алгоритм посадки затем испытали в трех сценариях с участием реальных дронов. В первом два микродрона должны были взлетать с расстояния полутора метров от MorphoLander и затем садиться на его платформы. Среднее значение отклонения от центра платформы в этом сценарии составило всего около 5,5 миллиметра. Во втором сценарии микродроны должны были садиться на материнский дрон, стоящий на неровной поверхности. В этом случае ошибка возросла и составила 25 миллиметров. Третий сценарий имитировал реальное применение: микродроны взлетали с платформ, в то время как MorphoLander отходил от места взлета на некоторое расстояние, после чего микродроны должны были сесть обратно. Среднее значение отклонения от центра 20-сантиметровой платформы составило 35 миллиметров. В будущем инженеры планируют увеличить точность и устойчивость алгоритма управления микродронами за счет контроля тяги отдельных винтов. https://www.youtube.com/watch?v=fV8_Ejy81s8&t=1s Совместная работа помогает роботам справляться с более трудными задачами. К примеру японские инженеры разработали систему из работающих в паре дрона и наземного робота. Они соединены друг с другом тросом, что позволяет наземного дрону взбираться на более крутые подъемы. Для этого дрон закрепляет трос на вершине, после чего наземный робот натягивает его с помощью лебедки и поднимается наверх.