Солнечные торнадо не являются аналогами земных атмосферных вихрей, сообщили исследователи на Европейской неделе астрономии и космических наук 3 апреля. Ученые, отследив направление движения плазмы в этих структурах, пришли к выводу, что они больше похожи на протуберанцы или волокна, состоящие из относительно холодной плазмы. Результаты исследований доступны (1,2,3,4,5) на портале ArXiv.org
Торнадоподобные плазменные образования впервые наблюдались на Солнце еще в начале двадцатого века, новый всплеск интереса к ним начался несколько лет назад, когда космическая обсерватория SDO получила изображения этих структур с хорошим разрешением. На полученных видео и фотографиях были видны гигантские вращающиеся структуры, похожие на земные торнадо, которые висели над фотосферой. Ранее предполагалось, что заряженные частицы в этих образованиях двигаются вдоль силовых линий магнитных по спирали и могут играть важную роль в нагреве вещества солнечной короны.
Чтобы понять природу таких плазменных структур группа астрономов во главе с Николасом Ламброссом (Nicolas Labrosse) проанализировала данные с трех космических аппаратов (IRIS, Hinode, SDO) и наземных солнечных обсерваторий, полученные в июле 2014 года. Ученые смогли определить, что магнитное поле в солнечном торнадо направлено горизонтально, а не вертикально, как в эруптивных протуберанцах, при этом напряженность магнитного поля у основания структуры составляет около 30 Гауссов. Благодаря эффекту Доплера удалось узнать скорость движения плазмы, которая составила около 65 километров в секунду, длина торнадоподобных образований при этом составляет около 80 тысяч километров.
Получается, что торнадо больше похожи на протуберанцы или волокна, состоящие из относительно холодной плазмы, а результаты наблюдений не могут быть интерпретированы как вращение плазмы внутри образования. Видимое для земного наблюдателя «вращение», скорее всего, проекция на плоскость неба движения плазмы вдоль линий магнитного поля. Вопрос о природе этих плазменных структур остается открытым и результаты работы накладывают необходимые ограничения на будущие модели магнитных полей в таких образованиях и движении плазмы в них.
Ранее мы рассказывали о том, каким образом внутренние гравитационные волны помогли узнать скорость вращения ядра Солнца, как могут погаснуть солнечные вспышки, а также о том, как 10 космических аппаратов отследили путешествие солнечного вещества по Солнечной системе.
Александр Войтюк
Это первый известный гидрид металлов в атмосферах экзопланет
Астрономы при помощи наземных телескопов достоверно обнаружили гидрид хрома в атмосфере горячего юпитера WASP-31b. Это первый случай подтвержденного открытия гидрида металлов в атмосферах экзопланет. Статья опубликована в журнале The Astrophysical Journal Letters. Линии гидридов и оксидов металлов используются астрофизиками при спектроскопических исследованиях атмосфер очень холодных звезд и коричневых карликов для их классификации и определения некоторых свойств — например, металличности или наличия облаков. Горячие экзогиганты могут обладать температурой, сравнимой с температурой коричневых карликов (а порой и звезд), поэтому в них тоже можно найти оксиды и гидриды металлов, которые влияют на свойства их атмосфер, например, вызывают температурную инверсию. Неоднократные поиски на горячих и теплых экзопланетах гидридов железа и хрома уже давали интересные кандидатуры, однако эти результаты основаны на спектроскопии низкого разрешения, что затрудняет достоверную идентификацию различных соединений и не позволяет сделать однозначных выводов. Группа астрономов во главе с Лаурой Флэгг (Laura Flagg) из Корнеллского университета сообщила об однозначном обнаружении гидрида хрома (CrH) в атмосфере горячего юпитера WASP-31b. Для этого ученые проанализировали данные спектроскопических наблюдений высокого разрешения, проведенных при помощи спектрографов GRACES и UVES, установленных на наземных телескопах «Джемини-Север» и VLT. Наблюдения велись в 2017 и 2022 году, во время транзитов планеты по диску звезды. Масса WASP-31b оценивается в 0,478 массы Юпитера, а радиус — в 1,549 радиуса Юпитера, она совершает один оборот вокруг своей звезды спектрального класса F5 за 3,4 дня и обладает равновесной температурой 1481 кельвин, а также очень низкой плотностью. Ранее в атмосфере экзопланеты уже был обнаружен гидрид хрома, однако тогда данные казались не до конца убедительными — статистическая значимость открытия составила 3,3 сигма. В текущем исследовании статистическая значимость обнаружения гидрида хрома составляет 5,6 сигма, что делает WASP-31b первой экзопланетой с подтвержденным наличием гидрида металла. Авторы отмечают, что текущие возможности наземной спектроскопии высокого разрешения для поисков гидридов и оксидов металлов на других экзопланетах ограничены и для новых открытий стоит использовать космические телескопы, такие как «Джеймс Уэбб», а также будущие крупные наземные телескопы следующего поколения. Ранее мы рассказывали о том, как астрономы впервые отыскали барий, самарий и тербий в атмосферах ультрагорячих юпитеров — это самые тяжелые найденные на сегодня элементы в атмосферах экзопланет.