Японская компания Tmsuk выпустила роботизированную коляску Rodem, на которую можно садиться верхом, сообщает Nikkei Technology. Так людям с ограниченными возможностями будет удобнее садиться на нее с кровати или кресла.
Сейчас даже самые продвинутые кресла-коляски представляют собой «кресла на колесиках». На них трудно самостоятельно садиться, поскольку человеку нужно повернуть тело в кресле, а сидя в традиционной коляске бывает тяжело дотянуться до нужных предметов.
Инженеры из Tmsuk сконструировали коляску с регулируемой высотой сиденья и посадкой верхом. Сиденье может выдвигаться назад и вниз по диагонали, чтобы соответствовать высоте дивана или кресла. Его высоту можно регулировать от 40 до 78,5 сантиметров, так что глаза пользователя, сидящего в коляске, будут находиться на уровне глаз стоящего человека. Спереди есть джойстик, которым можно управлять движением робота и регулировать высоту сидения. Кроме того, им можно управлять и со смартфона. Спинка в коляске не предусмотрена, но пользователь может перенести свой вес на переднюю часть сиденья.
Роботизированная коляска передвигается на четырех колесах, при этом задние колеса — всенаправленные, благодаря чему она может поворачиваться на месте. Аппарат можно заряжать дома от сети с напряжением 100 Вольт. Аккумуляторы заряжаются восемь часов, после чего робот может проехать более 15 километров с максимальной скоростью шесть километров в час. Он может подниматься под углом до 10 градусов и преодолевать разницу высот в четыре сантиметра. Весит робоколяска 110 килограммов.
Ранее американские инженеры представили работающий прототип инвалидной коляски с механическим приводом и с механизмом подъема в вертикальное положение. Предполагается, что она позволит вести людям с ограниченными возможностями более активный образ жизни и при этом будет стоить гораздо меньше, чем аналоги с электроприводом.
Пока лишь со скоростью 1,6 миллиметра в секунду
Американские инженеры разработали робота, способного автономно передвигаться в толще сыпучего материала, проталкивая себя вперед с помощью двух конечностей, напоминающих плавники. В испытаниях робот продемонстрировал способность передвигаться в песке на глубине около 127 миллиметров со скоростью до 1,6 миллиметра в секунду. Статья опубликована в журнале Advanced Intelligent Systems. Сыпучие материалы, такие как песок, мягкие почвы, снег или лунный реголит, представляют собой довольно сложную среду для передвижения. Объекты, движущиеся в их толще, испытывают высокое сопротивление, возрастающее с глубиной погружения. Кроме того, сыпучая среда ограничивает возможности зондирования и обнаружения препятствий. Тем не менее инженеры пытаются создать роботов, способных передвигаться в таких условиях. Например, американские разработчики представили прототип робочервя, способного двигаться в толще песка. Для снижения сопротивления он выдувает перед собой воздух, и одновременно разматывает мягкую оболочку своей передней части, выталкивая ее вперед, в то время как остальное тело остается неподвижным. Это позволяет значительно снизить сопротивление движению. Однако для его работы требуется воздух, который приходится подводить с поверхности. Создать робота, который смог бы передвигаться в песке автономно, решили инженеры под руководством Ника Гравиша (Nick Gravish) из Калифорнийского университета в Сан-Диего. Разработанный ими робот перемещается, проталкивая себя вперед через толщу сыпучей среды с помощью двух гибких конечностей, напоминающих плавники морской черепахи. Конечности состоят из пяти звеньев. Каждое звено способно вращаться относительно предыдущего, но углы их отклонений ограничиваются с помощью фиксаторов. В движение оба плавника приводятся через червячную трансмиссию с помощью единственного электромотора. При этом трансмиссия воздействует только на первые ближайшие к корпусу звенья. Благодаря фиксаторам, ограничивающим углы поворотов звеньев, при движении вперед конечности изгибаются, испытывая меньшее сопротивление среды, а при движении назад наоборот, распрямляются, позволяя роботу отталкиваться от песка. На концах конечностей разработчики поместили сенсоры, с помощью которых робот может обнаруживать расположенные сверху объекты. Корпус робота длиной около 26 сантиметров имеет прямоугольное сечение и утолщение в передней части, которое позволяет снизить сопротивление песка при движении. Нос робота заострен и имеет наклонную поверхность сверху, которая необходима для компенсации подъемной силы, возникающей при движении в песке. С этой же целью по бокам после проведенных тестов пришлось разместить два дополнительных наклонных неподвижных плавника, так как робот имел тенденцию задирать нос при движении под действием выталкивающей силы. Чтобы избежать попадания песчинок в механизм, конечности поместили в чехлы из нейлоновой ткани. Разработчики протестировали робота, погруженного на глубину 127 миллиметров в песок, сначала в небольшом искусственном резервуаре, а после в естественных условиях в песке на пляже. В сухом песке робот смог развить скорость 1,6 миллиметра в секунду. В более влажном песке на пляже робот двигался медленнее, со скоростью около 0,57 миллиметра в секунду. В будущем инженеры планируют увеличить скорость передвижения робота, а также научить его самостоятельно погружаться в песок. Ранее мы рассказывали об исследовании, в котором физики выяснили, что происходит со структурой песка при передвижении по нему с помощью прыжков. Они обнаружили, что при правильно подобранном времени задержки между приземлениями и новым толчком, можно увеличить высоту прыжка на 20 процентов и даже больше.