С помощью терагерцовой спектроскопии группа российских физиков показала, что двумерные сети из одностенных углеродных нанотрубок обладают металлической проводимостью. Результаты работы, опубликованной в Carbon, показывают, что благодаря свободному транспорту электронов между отдельными нанотрубками такие пленки являются перспективным материалом для микро- и оптоэлектроники.
Углеродные нанотрубки, которые представляют из себя трубки из одного или нескольких слоев графена, благодаря своей электронной структуре могут проявлять как полупроводниковые, так и металлические свойства. Это позволяет использовать их в качестве компонентов различных электронных устройств, например, при разработке эффективных транзисторов или для выработки электричества в гибкой носимой электронике. Кроме того, двумерные прозрачные сетки из одностенных углеродных нанотрубок считаются перспективным материалом для создания прозрачных суперконденсаторов. Но из-за того, что довольно сложно получить такие структуры без дополнительных примесей, приводящих к увеличению контактного сопротивления на стыки двух нанотрубок, до сих пор данные об их проводимости достаточно противоречивые.
Для того, чтобы определить природу проводимости в таких пленках, группа физиков из Московского физико-технического института и нескольких других институтов под руководством Бориса Горшунова (B. P. Gorshunov) и Елены Жуковой (E. S. Zhukova) провела исследование оптических и проводящих свойств углеродных нанотрубок (чистых или легированных хлоридом меди и иодом) при температурах от −268 градусов Цельсия до комнатной.
Углеродные нанотрубки были синтезированы методом осаждения из аэрозоля, в качестве источника углерода использовался ферроцен. Такой метод позволяет получить тонкие пленки из углеродных нанотрубок без примесей побочных продуктов и катализаторов всего за 10-12 секунд. В результате исследователям удалось получить тонкий прозрачный слой из неупорядоченной сетки углеродных нанотрубок.
Для исследования оптических и проводящих свойств таких пленок ученые использовали спектроскопию в терагерцовой и инфракрасной областях. Полученные данные показали, что в терагерцовой части спектра для нанотрубок не наблюдается пика проводимости между 0.4 и 30 терагерцами, которые неоднократно наблюдались в предыдущих работах. По словам авторов, это связано с тем, что им удалось получить более чистый слой, с плотными контактами между отдельными нанотрубками. Вместо этого, в полученных пленках ученые обнаружили металлическую проводимость, для описания которой они использовали модель Друде. Эта модель предполагает, что электроны ведут себя в материале как газ, частицы которого свободно перемещаются как внутри одной нанотрубки, так и между ними, сталкиваясь при этом друг с другом и узлами кристаллической решетки.
Используя данную модель, ученые получили данные о концентрации носителей заряда, их подвижности и длине свободного пробега в пленке. В зависимости от температуры и количества примесей, которые повышают химическую активность нанотрубок. Оказалось, что для всех типов нанотрубок проводимость практически не изменяется при повышении температуры, а введение легирующих добавок иода или хлорида меди позволяет увеличить концентрацию носителей заряда и проводимость пленок примерно в три-четыре раза.
По словам авторов работы, полученные результаты во-первых, показали перспективность использования терагерцовой спектроскопии для бесконтактного метода определения электропроводящих свойств материалов на основе углеродных нанотрубок, а во-вторых, о том, что такие пленки могут использоваться для электромагнитных приложений с использованием частот вплоть до нескольких терагерц.
Терагерцовое излучение сейчас находит все больше различных способов применения при исследовании динамики носителей заряда в различных материалах. В частности, его можно использовать для повышения разрешения микроскопии. Использование терагерцовой спектроскопии не ограничивается только исследованием электронных свойств материалов, а может применяться и в более необычных приложениях, например, с помощью нее можно читать книгу, даже не открывая ее.
Александр Дубов
При этом модуль Юнга и предел текучести не повлияли на изменение пространственной метрики
Физики из Франции изучили механизмы, отвечающие за образование цветков из сыра тет-де-муан, когда его сервируют, соскабливая тонкий верхний слой. Главным фактором, который повлиял на изменение пространственной метрики, стал коэффициент трения, который продемонстрировал плавное изменение вдоль радиуса сырной головы. При этом энергия разрушения оказалась достаточно большой и обеспечила переход к режиму пластического сдвига. Авторы работы отметили, что их результаты могут принести пользу для контроля морфогенеза при резке металла. Исследование опубликовано в Physical Review Letters.