Разрешение лазерной терагерцовой эмиссионной микроскопии удалось довести до 20 нанометров. Такого эффекта физики из США и Дании смогли добиться, дополнив терагерцовый микроскоп ближнепольным зондом, что повысило его разрешающую способность сразу на три порядка. Работа опубликована в ACS Photonics.
Лазерная терагерцовая эмиссионная микроскопия используется для исследования сверхбыстрой динамики носителей заряда или поляризации внутри кристалла. В основе метода лежит возбуждение с помощью фемтосекундных лазерных импульсов в материале терагерцового излучения. Исследование возбужденных при этом носителей заряда, которые двигаются с ускорением, дает информацию о локальном электрическом поле внутри кристалла. До настоящего времени пространственное разрешение такого метода ограничивалось дифракционным пределом, поэтому нельзя было исследовать объекты или области кристалла, размер которых меньше длины волны возбуждающего лазера.
В своей новой работе международная группа ученых из США и Дании предложила способ увеличить пространственное разрешение лазерного терагерцового микрооскопа, совместив его с зондом сканирующего ближнепольного микроскопа. В качестве такого зонда используется металлическая иголка с очень тонким острием. Во-первых, она ограничивает поле падающего света, что повышает разрешающую способность метода до длин меньше длины волны, а во-вторых, рассеяние света приводит к появлению оптической нелинейности в области между исследуемым образцом и кончиком иголки. В результате этого эффекта размер исследуемой области становится практически равен размеру кончика иголки, и доводит разрешение метода до 20 нанометров. Подобное совмещение ученые уже использовали для увеличения разрешающей способности инфракрасной микроскопии.
Для проверки предложенной схемы ученые совместили источник фемтосекундных лазерных импульсов длиной волны 820 нанометров с атомно-силовым микроскопом. В такой конфигурации иголка атомно-силового микроскопа одновременно выполняла и функцию ближнепольного зонда. С помощью такого устройства авторы работы получили изображение золотых наностержней, нанесенных на поверхность арсенида индия. Арсенид индия является источником терагерцовых волн, поэтому фактически такая установка позволяла совместить сразу три метода: атомно-силовую, инфракрасную и терагерцовую эмиссионую микроскопии.
Сравнение изображений, полученных разными методами, показали, что действительно разрешающая способность каждого из методов ограничивается только размером острия иголки и достигает 20 нанометров. А сравнение этих результатов с данными терагерцовой эмиссионной микроскопии в чистом виде показало, использование ближнепольного зонда улучшает разрешающую способность метода почти в тысячу раз.
По словам ученых, разработанный ими метод позволит исследовать с повышенной точностью электронные свойства самых разнообразных материалов, в частности, многослойных первоскитных солнечных батарей, эффективность которых зависит переноса заряда на межзеренных границах.
Терагерцовое излучение может использоваться не только для исследования электронных свойств различных материалов, но и для более необычных задач. Например, с помощью терагерцовой спектрометрии удается определять пол цыпленка до его вылупления из яйца. Еще одним вариантом применения терагерцового излучения является чтение закрытых книг.
Александр Дубов
Пока эти результаты вызывают сомнения
Физики из Южной Кореи обнаружили у апатита свинца, в котором часть атомов свинца замещена медью, сверхпроводящие свойства при комнатной температуре. Ученые утверждают, что полученный методом твердотельного синтеза материал — первый сверхпроводник при комнатной температуре и атмосферном давлении. Температура перехода разрушения сверхпроводящего состояния достигает в нем 127 градусов Цельсия, пишут исследователи в препринтах (1, 2) на arXiv.org. Впрочем, некоторые физики уже выразили сомнения в обоснованности опубликованных результатов. Сверхпроводимость — эффект, при котором у некоторых материалов электрическое сопротивление становится нулевым, — обычно наблюдается при экстремально низких температурах. Лишь в конце XX века удалось получить материалы, обладающие высокотемпературной сверхпроводимостью. Первым материалом с критической температурой (Тс) выше точки кипения азота (-195,8 градуса Цельсия) был оксид итрия-бария-меди. Только в 2010-х годах были открыты новые типы сверхпроводников, способных сохранять свои свойства при температурах, более близких к комнатной. При сверхвысоких давлениях (более миллиона атмосфер) сверхпроводящие свойства возникают и у гидридов многих элементов, например, у сероводорода. Недавно физики подтвердили наличие сверхпроводимости гидрида лантана LaH10 при −23 градусах Цельсия. Уже в этом году американские ученые получили сверхпроводимость гидрида лютеция, легированного азотом, при комнатной температуре и умеренно экстремальном давлении. Впрочем, другие группы воспроизвести их результаты пока не смогли. Группа корейских физиков под руководством Ли Сукбэ (Sukbae Lee) из Центра исследований квантовой энергии обнаружила, что в материале на основе апатита свинца Pb10-xCux(PO4)6O (доля x составляет от 0,9 до 1,1) сверхпроводящие свойства наблюдаются при комнатной температуре и атмосферном давлении, то есть без необходимости сжимать образец до сотен миллионов атмосфер. Материал LK-99 получен с помощью твердотельного синтеза в герметичной трубке, вакуумированной до 1,3 × 10-6 атмосфер. Анализ полученного порошка LK-99 при помощи рентгеновской дифракции показал, что величина постоянной его кристаллической решетки на 0,48 процентов меньше, чем у апатита свинца. Ученые связали это изменение с частичным замещением атомов свинца на более компактные по размеру атомы меди. Авторы исследования полагают, что это привело к возникновению внутренних механических напряжений в кристалле, которые в конечном итоге и стали причиной сверхпроводимости. Наличие сверхпроводимости в материале ученые подтвердили, наблюдая левитацию образца в магнитном поле за счет эффекта Мейснера, а также исследуя зависимость удельного сопротивления вещества от температуры. Физики определили, что критическая температура (Тс), при которой образец LK-99 терял сверхпроводящие свойства, составляет от 104 до 127 градусов Цельсия. Ниже этой температуры ученые выделили несколько характерных участков. В диапазоне до примерно 60 градусов Цельсия удельное сопротивление практически равнялось нулю с незначительными шумовыми сигналами. При более высоких температурах наблюдался плавный рост удельного сопротивления. Авторы интерпретировали этот рост как локальные нарушения сверхпроводимости в отдельных областях поликристаллического образца. Если результаты корейских физиков подтвердятся, LK-99 может стать первым веществом со сверхпроводимостью при комнатной температуре и атмосферном давлении. Впрочем, исследования сверхпроводимости при комнатной температуре часто вызывают вопросы у научного сообщества, даже если добираются до публикации в рецензируемых журналах. Например, после проверок в 2022 году из Nature отозвали статью американских исследователей, которые нашли сверхпроводимость при 17 градусах Цельсия в смеси сероводорода, метана и водорода. Технические вопросы, из-за которых отозвали статью о сверхпроводимости углеродистого сероводорода, возникли и к этой работе. Так, сомнения в обоснованности выводов корейских ученых высказал профессор химического факультета МГУ Евгений Антипов, который вместе с Сергеем Путилиным открыл в 1993 году новое семейство ртутьсодержащих сверхпроводящих купратов. Один из них — HgBa2Ca2Cu3O8+x — на настоящий момент имеет рекордную подтвержденную на данный момент критическую температуру, −138 градусов Цельсия. В разговоре с N + 1 химик прокомментировал открытие коллег: «Я не думаю, что эта статья выйдет в каком-либо серьезном журнале, потому что она не отвечает принятым стандартам. У меня вызывает большие сомнения возможность реализации сверхпроводимости в соединении с такой формулой. Это оксофосфат двухвалентного свинца, а двухвалентный свинец отличается тем, что у него свободные электроны локализованы, они не могут переходить в зону проводимости — а значит они будут локализованы на катионах свинца». Вопросы у Антипова вызвала и возможность замещения двухвалентного свинца на двухвалентную медь в том синтезе, который проводили корейские ученые: «Представленные данные не убеждают в возможности такого замещения, так как в образце присутствует примесь сульфида меди Cu2S. С точки зрения кристаллохимии это выглядит не очень обоснованно, а с точки зрения эксперимента — они получили образец с примесями, при этом примеси там много. Поэтому говорить, что медь находится в позиции свинца, когда она присутствует в виде примесей — не обосновано». Физики продолжают изучать различные вещества и способы достичь высокотемпературной сверхпроводимости. Например, ранее мы писали, как сверхпроводимость ищут даже в радиоактивных веществах. О том как механическое напряжение помогает получить состояние сверхпроводимости в графене читайте в нашем материале «Тонко закручено».