Инженеры из Федеральной политехнической школы Лозанны разработали дрон для безопасной доставки грузов. Центральную часть дрона с винтами, аккумулятором и управляющим модулем окружает складной каркас, внутри которого можно разместить небольшой груз. Такая конструкция позволяет защитить людей от опасных винтов квадрокоптера, а перевозимый им груз от внешних воздействий. Об этом сообщает сайт высшей школы.
Многие крупные компании рассматривают дроны в качестве средства доставки своих товаров, а некоторые из них уже используют их в таком качестве. Например, Amazon начал доставлять с помощью дронов небольшие товары, а Сбербанк даже доверил дронам инкассацию. Поскольку практически все дроны обладают довольно малым радиусом действия, их гораздо удобнее использовать не в качестве полноценного транспорта, а как средство для доставки на «последней миле», то есть непосредственно до клиента. Тем не менее, у такого подхода есть свои недостатки, в том числе и его небезопасность. Дело в том, что все дроны оборудованы винтами, вращающимися с огромной скоростью, и способными нанести серьезные увечья человеку, который может случайно прикоснуться к ним.
Новый дрон, разработанный в Швейцарии, решает эту проблему с помощью прочного защитного каркаса из углеволокна. В разложенном состоянии каркас окружает квадрокоптер, расположенный снизу конструкции, а также крепление для груза, расположенное вверху. Когда дрон выполнил свою задачу, его можно сложить и тем самым уменьшить его объем на 92 процента. Такая конструкция позволяет защитить как сам дрон и находящийся в нем груз, так и окружающих людей.
Инженеры утверждают, что квадрокоптер может поднимать грузы массой до 500 грамм, и перевозить их на расстояние до двух километров. Дрон оборудован системой обнаружения препятствий, за счет чего он может самостоятельно перемещаться по заданному маршруту и избегать деревьев и здания на пути.
Недавно японские инженеры представили свою версию защиты для дронов. Они установили на квадрокоптер две независимо вращающихся жесткие полусферы. При этом конструкция устроена таким образом, что снаружи на аппарат можно закреплять дополнительное оборудование.
Григорий Копиев
И летать по заданной траектории
Инженеры разработали прототип миниатюрного орнитоптера под названием Bee++. В воздух он поднимается с помощью четырех крыльев, а его масса составляет 95 миллиграмм. Махолет управляется по тангажу, крену и рысканью и способен летать по заданной траектории. Статья с описанием робопчелы опубликована в журнале IEEE Transactions on Robotics. В последние годы становятся популярными разработки в области миниатюрных беспилотников, которые по размеру сопоставимы с насекомыми. Миниатюризация вынуждает инженеров отходить от ставшей уже классической схемы с воздушными винтами и электромоторами, так как использовать их эффективно в беспилотниках весом меньше грамма невозможно. Вместо этого инженеры используют схему орнитоптеров — летательных аппаратов, у которых подъемная сила создается за счет периодических взмахов крыльями. Для приведения их в движение обычно применяют пьезоэлектрические актуаторы, передающие усилие на крылья через механическую трансмиссию. Несмотря на то, что эта схема доказала свою работоспособность, большинство из созданных сегодня миниатюрных махолетов не имеют стабильного управления по оси рысканья. Эту проблему решили инженеры под руководством Нестора Переса-Арансибии (Nestor Perez-Arancibia) из Университета штата Вашингтон. Они построили миниатюрный орнитоптер, который управляется по всем трем осям. Микроорнитоптер, названный Bee++, представляет собой улучшенную версию орнитоптера, представленную авторами в 2019 году. Так же, как и предшественник, Bee++ имеет четыре машущих крыла, приводимых в действие индивидуальными пьезоэлектрическими актуаторами, а его масса составляет 95 миллиграмм. Сверху и снизу на корпус установлены восемь защитных стержней, которые предотвращают махолет от ударов об окружающие предметы. Питание прототип получает через провода. Несмотря на то, что крылья не имеют механизмов управления углом установки, плоскости их движения имеют заранее определенный наклон. Благодаря этому удается создавать крутящий момент по крену, тангажу и рысканью за счет изменения амплитуды движения пар крыльев. Например, для того чтобы наклонить махолет вперед, амплитуда пары крыльев, расположенных в передней части уменьшается, вследствие чего снижается генерируемая ими тяга. В результате орнитоптер наклоняется заданном направлении. Аналогичным образом происходит управление по оси крена с помощью боковых пар крыльев. Для поворотов по оси рысканья изменяют амплитуду движения пар крыльев, расположенных по диагонали. Набор или снижение высоты происходит при увеличении или снижении частоты взмахов всех четырех крыльев. Инженерам удалось увеличить частоту движений крыльями, что привело к увеличению тяги на 125 процентов по сравнению с предыдущей версией робопчелы, которая могла лишь держаться в воздухе, но не имела достаточной тяги для управления рысканьем. В испытаниях робопчела продемонстрировала хорошую управляемость по оси рысканья и способность разворачиваться на угол 90 градусов за 50 миллисекунд со скоростью около 1800 градусов в секунду, что сравнимо с характеристиками мухи дрозофилы. Также робопчела успешно продемонстрировала способность удерживать положение корпуса по оси рысканья при одновременном перемещении по сложной траектории. По словам разработчиков в будущем в созданную ими платформу можно будет интегрировать сенсоры, которые позволят системе управления робопчелы ориентироваться в пространстве. https://www.youtube.com/watch?v=m9lLO1QpdcE Ранее мы рассказывали об инженерах из США, создающих крупные орнитоптеры, которые внешне похожи на птиц. Для этого они используют чучела настоящих животных. Корпус одного из прототипов покрыт перьями кеклика, а в его передней части находится голова чучела этой птицы, а во втором беспилотнике используются настоящие крылья голубя.