Исследователи из Университета прикладных наук Верхней Австрии разработали прототип носка с обратной связью для протезов нижних конечностей. Ученые представили доклад на конференции UIST 2016.
Некоторые современные модели протезов для рук и ног уже оснащены системами обратной связи, однако стоимость таких умных протезов может достигать нескольких десятков тысяч долларов. При этом протезы со временем изнашиваются и требуют замены раз в несколько лет, что существенно ограничивает круг людей, которые могут себе позволить высокотехнологичные искусственные конечности. В то же время, обычные протезы зачастую обладают минимальным набором функций, а самые дешевые версии протезов нижних конечностей и вовсе представляют собой пассивную опору. Такие простые искусственные конечности не позволяют их владельцу выполнять многие привычные большинству людей операции — например, полноценно пользоваться педалями или кататься на велосипеде.
Для того, чтобы расширить функциональность базовых протезов австрийские ученые решили разработать дополнительную неинвазивную систему обратной связи, которая не привязана к конкретной искусственной конечности. Исследователи разработали прототип умного носка, который может определять давление в разных зонах стопы и передавать эту информацию пользователю с помощью вибрации. По мнению разработчиков, такой носок можно использовать для нескольких протезов и разной активности, поскольку устройство может использовать разные наборы настроек.
Носок состоит из трех слоев ткани, сшитых между собой. Средний слой выполнен из пьезорезистивной ткани, а внутренний и наружный слои содержат токопроводящие полосы. При этом носок сшит таким образом, чтобы полосы этих двух слоев были расположены перепендикулярно — таким образом, носок представляет собой эластичную матрицу, позволяющую определять давление в шести разных зонах стопы. Данные о силе давления, изгибе или прикосновении в какой-либо зоне стопы передаются на стропу-браслет с шестью вибромоторами, по одному мотору на каждую зону. Пользователь с помощью «липучки» может прикрепить вибростропу на руку, торс, или другую более удобную часть тела, а моторы вибрируют с разной силой, которая зависит от передаваемого матрицей сигнала.
Авторы отмечают, что матрица позволяет по-разному настроить зоны чувствительности носка — из восьми опрошенных людей с ампутированными нижними конечностями все добровольцы по-разному обозначили зоны стопы, которым необходима чувствительность. При этом больше половины добровольцев согласились с утверждением, что система обратной связи, сообщающая о прикосновении протеза к чему-либо, облегчат выполнение повседневных задач.
Существуют и другие проекты, решающие проблему обратной связи в искусственной конечности. Например, есть экспериментальные протезы, обеспечивающие тонкую чувствительность пальца, предупреждающие об ожоге ударом тока, а также нейроинтерфейс, позволяющий управлять отдельными пальцами протеза. Кроме того, американские ученые разработали нейроинтерфейс, который позволил полностью парализованному человеку осязать предметы с помощью протеза.
Одного заряда батареи хватит на 40 минут подводного плавания
Компания CudaJet разработала подводный электрический реактивный ранец для быстрого плавания под водой. Он надевается на спину пловца и позволяет передвигаться под водой на глубине до 40 метров со скоростью до трех метров в секунду. Одной зарядки батареи подводного джетпака хватает на 40 минут работы, сообщает New Atlas. При поддержке Angie — первого российского веб-сервера Обычно джетпаками (реактивными ранцами) называют персональные летательные аппараты, которые надеваются на спину и поднимают человека в воздух за счет реактивной тяги. Но этот же способ передвижения можно использовать и под водой. Более того, так как в водной среде не требуется поднимать вес тела человека, то устройство может быть достаточно компактным по размеру. В 2018 году студент британского Университета Лафборо Арчи О’Брайан создал прототип электрического реактивного подводного ранца Cuda. За прошедшее время прототип был доработан и началось серийное производство его финальной версии под названием CudaJet. Масса подводного джетпака составляет 13,2 килограмм, он крепится на спине жилета массой от 1,5 до 1,7 килограмм (в зависимости от размера). За реактивное движение под водой отвечает водяная помпа, всасывающая воду через водозаборник в верхней части и выталкивающая ее через два сопла, расположенные в нижней части ранца, развивая при этом 40 килограмм тяги. Пловец управляет тягой с помощью проводного ручного контроллера, а направление движения меняется с помощью положения тела. CudaJet позволяет пловцу не прилагая усилий разгоняться под водой до трех метров в секунду. Устройство рассчитано на максимальную глубину погружения 40 метров. Одной зарядки батареи в течение 75 минут хватает на 40 минут работы под водой. Базовая версия джетпака в интернет-магазине компании стоит 14 тысяч фунтов стерлингов. Помимо реактивных ранцев существует другой тип персональных летательных аппаратов — ховерборд. Он выглядит как летающая платформа, на которой пилот стоит во время полета. В 2019 году основатель компании Zapata, занимающейся разработкой персональных летательных аппаратов, пересек Ла-Манш на ховерборде собственной разработки.