Как плоды и семена занимаются воздухоплаванием
Тесниться большой семьей на небольшом пространстве не очень приятно — и ресурсов может не хватать, и распространить свое влияние хочется. Растения ходить не умеют, поэтому квартирный вопрос решают иначе. Один из самых популярных способов избавиться от детей — пустить их по ветру.
Чтобы послать отпрысков подальше, растения прибегают к разным ухищрениям. Кто-то оснащает их крыльями, кто-то — пропеллерами, кто-то выдает парашют. У каких-то растений летают плоды, у каких-то — сами семена. От выбора зависит как дальность, так и успех перелета.
В 1986 году американская ботаник Кэрол Аугшпургер (Carol K. Augspurger) выделила шесть разновидностей летающих плодов и семян:
поплавок (floater),
ондулятор (undulator),
вертолетик (helicopter),
вращающийся барабан (tumbler),
пропеллер (autogyro),
пропеллер, который вращается вокруг своей длинной оси (rolling autogyro).
Сейчас используют деление попроще: на вертолетики, парашютики и планеры. С точки зрения ботаники, большинство летающих плодов — крылатки. Это односемянные плоды с одним или несколькими крыльями и центром тяжести в области семени. Крылья у крылаток бывают самые разные: плоские, изогнутые, некоторые потверже, другие гибкие.
Все вращающиеся крылатые плоды попадают в группу вертолетиков — просто с разным количеством крыльев. Но в зависимости от количества крыльев и способа вращения их условно можно поделить на две — однокрылые «пропеллеры» и радиально симметричные «вертолетики» с несколькими лопастями.
Плоды-пропеллеры, например, у клена. В полете они вращаются вокруг одного из своих концов. При вращении передний край крыла рассекает воздух и создает вихрь, сходящий с передней кромки (leading edge vortex).
Лопасть кленовой крылатки описывает в полете широкий конус. За счет вихревых потоков, которые создает это вращение, будущий клен медленно снижается примерно 20 секунд — этого времени обычно хватает на то, чтобы ветер подхватил снижающийся плод и отнес подальше от материнского дерева.
Вот так выглядит вихревой поток вокруг вращающегося плода клена белого (Acer pseudoplatanus):
Чтобы вихревые потоки генерировали подъемную силу, плоскость кленового крыла отклоняется от горизонтали примерно на 20 градусов. Этого хватает, чтобы кленовый пропеллер раскручивался до примерно 20 оборотов в секунду, снижая скорость падения 40-миллиграммового семени примерно до метра в секунду.
Аналогичные вихревые потоки держат в воздухе плод клена дланевидного (Acer palmatum).
Ближе к центру тяжести летящего плода огибающий его воздушный поток завихрен, а на конце вращающейся лопасти — нет. Так центр вихря оказывается ближе к оси вращения крылатки и создает подъемную силу, которая частично компенсирует силу тяжести.
Такой же принцип полета использует свитения крупнолистная (Swietenia macrophylla), которая растет в тропических лесах Южной и Центральной Америки. Только у нее летают не плоды, а отдельные семена.
Аэродинамика у этих семян — примерно такая же, как и у односемянных плодов клена: лопасть, вращаясь, стабилизирует поток на своем конце, фокусируя центр вихря над плодом.
Ученые, изучающие аэродинамические свойства плодов и семян, визуализируют работу лопастей с помощью велосиметрии движущихся частиц (particle image velocimetry, PIV). Для этого плод-пропеллер запускают в аэрозоль люминесцентных частиц и подсвечивают лазером.
Плод ясеня внешне похож на крылатку клена, но он намного тверже и симметричнее. Отрываясь от ветки, он точно так же начинает крутиться вокруг более тяжелого конца, к которому крепится семя.
Но в отличие от крылатки клена, плод ясеня еще вращается и вокруг своей длинной оси. Такое вращение тоже устойчивое и генерирует вихрь, который дольше удерживает плод в воздухе.
У вертолетиков лопастей больше и они другой формы — изогнутые. В полете плоды вращаются вокруг вертикальной оси симметрии, которая проходит через центр плода.
Вот так, например, летают плоды триплариса (Triplaris sp.) с тремя лопастями:
Это один из самых эффективных летательных аппаратов среди плодов с лопастями — вертолетик триплариса — за секунду снижается лишь на 75 сантиметров. Примерно в полтора раза медленнее, чем кленовые пропеллеры. Так же вращаясь, опускаются к земле и двухлопастные плоды двукрылоплодника (Dipterocarpus grandiflorus).
Вертолетики, оторвавшись от ветки, сразу же начинают вращаться, генерируя подъемную силу. Она вместе с силой сопротивления воздуха частично компенсирует силу тяжести и увеличивает таким образом время падения.
Норвежские физики в 2019 году провели серию экспериментов и построили модели крылатых плодов, чтобы уточнить аэродинамику их полета. Они выяснили, что оптимальный угол между основанием и кончиком крыла составляет примерно 110 градусов. Тогда и двух-, и трех, и пятикрылые плоды будут держаться в воздухе дольше всего. Ученые определили это, моделируя плоды, и обратили внимание, что настоящие растения пришли к тому же самому выводу в ходе эволюции.
В отличие от кленовых вертолетиков, планирующие семена — например, вяза — не полагаются на вращение. Поверх его семени вырастает одно большое крыло, которое увеличивает сопротивление воздуха во время падения.
Такой полет довольно медленный, но без вращения — неустойчивый. Планирование крылатки вяза генерирует нерегулярные вихри, из-за которых она часто и непредсказуемо меняет свою ориентацию, поэтому падает вниз скачками. Так выглядит полет плода вяза в замедленной съемке:
Зато если совместить планирование и вращение, то можно добиться долгого и при этом устойчивого снижения. Так делает, например, «вертолетчица» тристаллатея, у плодов которой очень большие лопасти для своей массы — к «кабине» весом 20 миллиграммов крепятся лопасти диаметром около двух сантиметров. За счет вращения плоды сохраняют ориентацию и падают со скоростью не больше полуметра в секунду.
Другой пример совмещения планирования на широком крыле с вращением — плоды фирмианы простой (Firmiana simplex). У фирмианы плод уже не крылатка, а листовка — несколько семян, прикрепленных к сухому околоплоднику в форме листа. Раскрывшись, лист превращается в крыло в форме слегка закрученной в спираль ленты.
Такой летательный аппарат может взять на борт до четырех пассажиров-семян. Листовка вращается со скоростью от 7 до 15 оборотов в секунду, в зависимости от числа семян и, соответственно, массы на квадратный сантиметр крыла — и идет вниз не быстрее одного-двух метров в секунду.
Если деревьям и другим высоким растениям, чтобы отправить потомство куда подальше, достаточно сконструировать для них планер, который снизит скорость их падения хотя бы до метра в секунду, то невысоким травянистым растениям приходится придумывать что-то посерьезнее. Одуванчики, например, снабжают свои семена парашютиками и ждут попутного ветра.
Когда тот дует достаточно сильно, то отрывает семена от растения, и те отправляются в полет. Для того, чтобы он был устойчивым, сила лобового сопротивления, которая держит парашют в воздухе, должна почти полностью уравновешивать силу тяжести семечка. Тогда все будет зависеть от бокового ветра: чем дольше и сильнее будет ветер, тем дальше улетит плод. Парашюты одуванчиков не представляют собой монолитный парус, а разбиты на отдельные нити, примерно сто штук. Благодаря этому вихрь, который возникает во время полета плода (это в данном случае семянки с хохолком), становится симметричнее и уже. Лобовое сопротивление такого парашюта примерно в четыре раза больше, чем было бы у сплошного диска того же радиуса.
Другие растения непостоянству ветра свое потомство не доверяют. Вместо того, чтобы снаряжать плоды инструментами для воздухоплавания, сами бросают их подальше, иногда на несколько метров — поэтому в «аэродинамический» реестр не входят. Хотя некоторые из них и оптимизировали под эту задачу и себя, и аэродинамику своих снарядов.
Катапультируемые семена отправляются в полет либо в тот же миг, когда лопается плод, либо после его раскрытия. В момент отрыва энергия связи с родителем преобразуется в кинетическую энергию улетающего отпрыска.
Растениям, которые еще и оптимизировали форму семян, удается запускать их совсем далеко. Например, руэллия закручивает свои дисковидные семена до полутора тысяч оборотов в секунду, благодаря чему они стабилизируют свой полет и могут пролететь расстояние до семи метров.
Александр Дубов
Но такое значение достижимо только при восстановлении деградированных лесов
Мировые леса потенциально способны накопить еще порядка 226 миллиардов тонн углерода: 139 миллиардов тонн в существующих деградированных лесах, если их восстановить, и еще 87 миллиардов тонн на обезлесенных территориях, где высадка и восстановление лесов возможно и будет поддержано обществом. К таким выводам пришли ботаники, оценив глобальный потенциал депонирования углерода лесными экосистемами. Результаты их исследования опубликованы в журнале Nature.