Пять углов

Ликбез в честь решения задачи о пятиугольных замощениях

Недавно математикам из Вашингтонского университета в Ботелле удалось обнаружить новый тип пятиугольного паркета. Он стал пятнадцатым, известным на настоящий момент. Мы предлагаем читателю разобраться в том, что это вообще за паркеты такие и какие у них есть замечательные свойства.

UPD. Эта статья была написана в 2015 году, когда было открыто 15-е семейство пятиугольников, которые могут замостить плоскость. В июле 2017 года стало известно, что француз Михаэль Рао доказал, что ничего, кроме этих семейств, нет. В частности работа Рао заканчивает классификацию замощений выпуклыми многоугольниками.

Начнем, собственно, с понятия паркета, которое еще называют замощением. Паркетом называют разбиение плоскости на многоугольники так, что любые две фигуры пересекаются либо по целой стороне, либо по вершине, либо не пересекаются вообще. Разумеется, придумать таких разбиений можно очень много, но нас будут интересовать только достаточно симметричные паркеты.

Самый простой тип паркета, называемый платоновым, — это паркет из правильных n-угольников, то есть многоугольников, у которых все углы и все стороны равны.
Всего таких паркетов три штуки: плоскость могут замощать только правильные треугольники, четырехугольники (они же квадраты) и шестиугольники. Доказать это достаточно легко. Сумма углов многоугольника считается по формуле 180(n — 2). Соответственно, величина угла правильного n-угольника в этом случае составляет 180(n — 2)/n. В каждой вершине паркета сходится целое число углов (скажем, k штук), причем их сумма должна быть равна 360 градусам. Получаем на эти два целых числа следующее тождество k(n — 2) = 2n. Легко показать перебором, что это равенство разрешимо только для n = 3, 4 и 6.

Забавно, что если отказаться от условия правильности многоугольника, и, скажем, рассмотреть паркеты, составленные только из выпуклых многоугольников (то есть многоугольников, у которых все углы меньше 180 градусов), то выяснится, что сторон в таких многоугольниках все равно не может быть больше шести. Доказывается это, впрочем, несколько сложнее. Если отказаться от условия выпуклости, то семиугольник вполне может замощать плоскость.

Что касается разрешенных для паркета многоугольников, то про них можно сказать вот что. Замостить плоскость можно любым треугольником — достаточно составить из него и повернутой копии параллелограмм. Произвольный четырехугольник на роль паркета также подходит.

С шестиугольниками все любопытнее. Например, можно взять платоново замощение и начать его растягивать по одному из направлений. В результате получится паркет из уже не правильных шестиугольников. Оказывается, впрочем, что такое растягивание (как и некоторые, более хитрые преобразования) сохраняет фиксированный набор свойств.

Чтобы описать их, обозначим углы шестиугольника как A, B, C, D, E, F, а стороны как a, b, c, d, e, f. При этом считаем, что сторона a примыкает к углу A справа и все стороны и углы названы по часовой стрелке. В 60-е годы прошлого века была доказана замечательная теорема: шестиугольником можно замостить плоскость тогда и только тогда, когда он принадлежит одному или более из трех классов (классы тут пересекаются, скажем, правильный шестиугольник принадлежит всем трем) :

  1. A + B + C = 360
  2. A + B + D = 360, a = d, c = e
  3. A = C = E = 120, a = b, c = d, e = f.

Однако наиболее сложный случай паркета на плоскости — это пятиугольный паркет. В 1918 году Карл Райнхардт описал пять классов таких паркетов. Как и в случае с шестиугольниками, это целые семейства пятиугольников, задаваемые некоторым набором равенств на стороны и углы. Самое простое из них, пожалуй, это A + B = 180 (считаем, что углы у пятиугольника обозначены как A, B, C, D, E). Проверить, что такими пятиугольниками можно замостить плоскость, оставляем в качестве упражнения читателям.

Долгое время этот список считался полным, пока в 1968 году Роберт Кершнер вдруг не обнаружил еще три таких класса. В 1975 году математик Ричард Джеймс увеличил это число до девяти. Тут в истории начинается самое интересное — об открытии Джеймса написал журнал Scientific American. Статью увидела Мардж Райс, американская домохозяйка и по совместительству математик-любитель. Разработав собственную систему записи пятиугольных замощений она за 10 лет довела их количество до 14.

И вот, наконец, спустя 30 лет ученые из Вашингтонского университета в Ботелле открыли 15-е замощение. Сделали они это с помощью компьютера: в этом университете проект по численному изучению замощений с участием студентов ведется уже несколько лет. Один из участников группы, Кейси Манн признается, что сделано это было с помощью достаточно большого перебора. То есть никакого серьезного продвижения за этим открытием не стоит.

Замощения с единственной выпуклой плиткой — не единственные и, пожалуй, не самые любопытные. Если разрешить использовать в паркете несколько плиток, то свойства замощения станут интереснее. Если все эти плитки — правильные многоугольники, то уже для конечного набора плиток существует бесконечное число таких замощений.

Чтобы получить что-то любопытное, можно попытаться сузить класс паркетов. Такое сужение хорошо известно и называется однородными замощениями. Однородным называется паркет, в котором подходящим преобразованием плоскости (поворотом и сдвигом то есть) любую вершину паркета можно перевести в любую другую. В каком-то смысле в таком паркете все вершины равноправны, а глобальное устройство паркета является следствием его локальной структуры.

Заметим, что упоминавшиеся ранее платоновы замощения являются однородными. Так вот, помимо этих трех существует еще восемь однородных замощений, состоящих из правильных многоугольников. Их еще называют архимедовыми замощениями.

Наконец, самый экзотический класс — это непериодические и апериодические замощения. Как ни странно, но эти два термина обозначают разные классы математических объектов. В первом случае разбиение, о котором идет речь, не должно иметь трансляционной симметрии. Это означает, что разбиение такое хитрое, что нет вектора, сдвиг на который переводил бы это разбиение в себя.

Приведем два таких непериодических примера. Первый паркет — это замощение сфинкса. Сфинксом называют невыпуклый пятиугольник, который получается из шести правильных треугольников. Штука в том, что и из четырех одинаковых сфинксов можно склеить сфинкса, который будет подобен (в смысле подобных треугольников) исходному. Повторяя этот процесс (как показано на этой гифке), можно построить самоподобное замощение плоскости.

Другой пример непериодического паркета — замощение Фодерберга. Оно состоит из невыпуклых девятиугольников. Замощение стартует с одного многоугольника, затем вокруг двух его вершин конгруэнтные многоугольники выкладываются спиралью. Со временем ветви спирали раскручиваются и получается непериодическое замощение.

Оба примера роднит то, что в обоих случаях из того же набора плиток можно составить периодические замощения (это предлагается проверить читателю в качестве задачи). Апериодическим замощением называется паркет, исполненный таким набором плиток, что из них нельзя сложить ни одно периодическое замощение. Самое, пожалуй, известное апериодическое замощение — это мозаика Пенроуза, состоящая из двух плиток.

Существуют ли апериодические замощения из одной плитки — этот вопрос до сих пор открыт. Единственное, что, как уже говорилось выше, если такие замощения и существуют, то они должны быть пятиугольными.

Андрей Коняев

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Российские школьники завоевали пять золотых медалей на Международной математической олимпиаде

Она проходит в Японии