А также изменили время его когерентности
Физики воспользовались акустическими волнами гигагерцовой частоты для контроля когерентности отрицательно заряженной азотно-замещенной вакансии в алмазе. Новый способ позволит многократно (как минимум, в два раза) увеличить время когерентности системы. Результаты исследования ученые опубликовали в журнале PRX Quantum.
Чем больше время когерентности кубитов в квантовых вычислителях, тем шире круг полезных задач, которые они способны решать. В каждом конкретном случае уменьшение декогеренции реализуется по-своему. Например, когда речь идет о сверхпроводящих кубитах, то на помощь приходят сверхнизкие температуры.
Иногда ученые используют различные дефекты кристаллов (чаще всего это азотно-замещенные вакансии в алмазах, они же NV-центры) в качестве кубитов. Манипуляции с подобными системами можно проводить даже при комнатной температуре, однако нивелировать влияние окружающей среды все равно приходится. Декогеренция в этом случае проявляется в затухании осцилляций Раби между основным и возбужденными состояниями. Для борьбы с этим явлением исследователи ранее использовали микроволновое излучение, магнитные и электрические поля.
Группа физиков из Корнеллского университета под руководством Грегори Фукса (Gregory D. Fuchs) продемонстрировала когерентный контроль отрицательно заряженного NV-центра в возбужденном состоянии с помощью акустических волн гигагерцовой частоты.
Для этого исследователи изготовили объемный акустический резонатор из монокристаллического алмаза толщиной 500 микрометров. Внутрь они поместили подопытный NV-центр, который перевели в возбужденное состояние лазерным излучением. С помощью электрического поля частотой 1,296 гигагерца, приложенного к нижней грани параллелепипеда, физики добились возникновения стоячей продольной волны деформации между поверхностями кристалла, которые выполнили роль акустических зеркал. Энергия фононов, возбужденных колебаниями резонатора, передалась NV-центру и позволила удержать последний внутри ограниченного набора связанных орбитальных возбужденных состояний. Тем самым ученые добились управляемой когерентности системы. Для измерения результатов эксперимента авторы работы применили фотолюминесцентную спектроскопию.
Полученные данные ученые сравнили с предсказаниями стационарной теории возмущений и модели Ландау — Зенера, получив хорошее соответствие теории и эксперимента. Зависимость времени когерентности от параметров резонатора при этом оказалась немотонной функцией. Например, при мощности акустического осциллятора 14,5 милливатта время когерентности составило 5 наносекунд, значению 8,4 милливатта соответствовали 12,8 наносекунды, а для мощности 4,9 милливатта время когерентности оказалось 9,5 наносекунды.
Авторы исследования подчеркивают, что если правильно подобрать мощность звукового излучателя, то можно получить многократный рост времени когерентности системы (как минимум, в два раза).
О том, как физики смогли добиться увеличения времени когерентности молекулярных кубитов до ста миллисекунд, мы писали ранее.
Точность двухкубитного вентиля на устройстве составила около 96 процентов
Физики реализовали квантовое вычислительное устройство на сверхпроводниках с помощью модульного принципа, разместив на плоской подложке четыре отдельных узла, конфигурацию которых можно менять произвольным образом. Ученые добились средней степени совпадения (fidelity) результатов работы двухкубитных вентилей в 96 процентов и качества приготовления запутанного двухкубитного состояния в 98,74 процента. Новый метод создания квантовых устройств будет полезен для эффективного масштабирования систем неограниченного размера. Результаты исследования опубликованы в Physical Review X.