Квантовая азбука: «Когерентность»

Можно ли потревожить квантовую систему чуть-чуть, а потом вернуть все обратно?

Квантовый мир очень далек от нашего, поэтому его законы часто кажутся нам странными и контринтуитивными. Однако важные новости из квантовой физики приходят буквально каждый день, так что иметь о них правильное представление сейчас необходимо — иначе работа физиков в наших глазах превращается из науки в магию и обрастает мифами. Мы уже говорили о квантовых компьютерах, нелокальности и квантовой телепортации. Сегодня речь пойдет о еще одной загадочной квантовой штуке - когерентности. Рассказывает о ней младший научный сотрудник Российского квантового центра Алексей Федоров.

Что такое когерентность? Есть ли какие-то хорошие аналогии из классической физики?

Понятие когерентности впервые возникает именно в классической физике, когда речь идет про колебания. Классическая когерентность — это постоянство относительной фазы между двумя или более волновыми процессами одной частоты. Когда говорят о когерентности всегда вспоминают интерференцию — эффект, при котором суммарный поток энергии от нескольких когерентных источников в некоторой точке пространства получается не непосредственным сложением потоков энергии от каждого источника, а чуть сложнее. Говоря формально, нужно сложить комплексные амплитуды, которые описывают приходящую от каждого источника волну, потом взять модуль полученного комплексного числа и возвести его в квадрат (с некоторым коэффициентом, чтоб с размерностями все было хорошо).

За счет суммирования комплексных амплитуд, а не интенсивностей, в пространственном профиле интенсивности образуется хорошо знакомая интерференционная картинка. Именно отличие результирующей интенсивности волнового процесса от суммы интенсивностей его составляющих и есть признак интерференции.

Теперь к квантовой механике. Одним из основных положений квантовой механики является то, что микроскопические частицы в своем поведении проявляют волновые свойства. Но если в классической физике мы говорили, например, о волнах напряженности электромагнитного поля, то для микроскопических частиц речь идет волнах вероятности, описывающимися комплексными «амплитудами вероятности», известными также под названием «волновая функция». Именно эта идея заложена в уравнение Шрёдингера.

Для волн вероятности, как и любых других волн, также характерны все те же эффекты, связанные с возможностью наложения волн друг на друга. В квантовой механике такое наложение называют (когерентной) суперпозицией. Именно суперпозиция приводит к «квантовым» эффектам дифракции и интерференции.

Квантовые системы могут находиться в когерентной суперпозиции состояний, даже если это суперпозиция (с классической точки зрения) взаимоисключающих состояний. Прямое применение квантовых законов к классическому миру ведет к парадоксальным ситуациям, одна из наиболее известных — кошка Шрёдингера. Да, в ящик Шрёдингер хотел посадить именно кошку (die Katze), а не кота.

Почему когерентность необходима для квантовых вычислений?

Квантовая когерентность позволяет реализовать квантовый параллелизм. Архитектура квантовых компьютеров отличается от архитектуры классический вычислений в нескольких важных аспектах (про это в квантовой азбуке уже говорилось, но напомнить основы будет не лишним).

Система битов заменяется на систему кубитов, которая находится в некотором начальном состоянии. Логические операции выполняются не классическими логическими элементами, а их квантовыми аналогами. Таким образом, в квантовом компьютере через квантовый логический элемент («гейт») может проходить сразу целый набор (когерентная суперпозиция) входных сигналов, дающих суперпозицию соответствующих выходных сигналов. Это и обеспечивает преимущество квантовых вычислений над классическими в некоторых классах задач, например, в задаче факторизации.

Правда тут есть тонкость: после того как квантовый компьютер закончит вычисления, ответы к задачам, которые он решал, будут также находиться в состоянии суперпозиции. Как только мы попытаемся выяснить, каковы эти ответы, мы получим только один, случайно выбранный ответ. Но проделав вычисления много раз, мы можем говорить об ответе с достаточной степенью вероятности.

Квантовый компьютер имеет преимущество над классическим в определенных классах задач. С одной стороны, это ограничивает его применения и свидетельствует о том, что он, возможно, не заменит нам классический персональный компьютер. Хотя, высказывая подобные предположения стоит помнить о том, что на заре компьютерной эры миру приписывали необходимость всего в пяти компьютерах.

Кроме того, класс задач, с которым квантовый компьютер справляется лучше классического, лежит в основе современных представлений о криптографии и информационной безопасности. Так что возможное появление квантового компьютера уже меняет правила в информационных технологиях.

Что такое декогеренция, какие процессы могут к ней приводить?

В классической физике явление декогеренции также существует. Декогеренция — нарушение когерентности — это исчезновение когерентных свойств, связанное с потерей постоянства относительной фазы между источниками, что, например, приводит к разрушению интерференционной картины, о которой мы говорили выше.

В квантовой механике все сложнее и намного интереснее. Декогеренция представляет собой взаимодействие квантовой системы с окружающей средой, при котором квантовое состояние системы неконтролируемо изменяется. С точки зрения теории квантовой информации декогеренции соответствует возникновение запутанности между степенями свободы квантового состояния и степеняими свободы окружения.

При этом в окружение попадает часть информации о квантовом объекте, в то время, как в квантовую систему попадает часть информации об окружении. Декогеренция происходит из-за того, что хаос неопределенности состояния окружения врывается в состояние квантовой системы, изменяя его неконтролируемым образом.

Рассмотрим это на примере знаменитого опыта Юнга: будем стрелять из «квантового пулемета» частницами на экран с двумя щелями . Если после экрана поставить детектор электронов, то мы увидим интерференционную картину. В опыте Юнга интерференция пропадает тогда, когда в окружение попадает информации, через какую из двух щелей прошла частица. Это может быть связано, как с наличием специальной экспериментальной установки (например, подсвечивающих каждую из щелей «фонариков»), так и с неконтролируемыми экспериментаторами явлениями. Казалось бы это чудо, но нет — это «взаимодействие» квантовой системы с наблюдателем.

Если рассматривать поведение всех, в том числе и макроскопических, объектов с точки зрения квантовой механики, то декогеренции соответствует возникновение запутанности между конкретным квантовым объектом и окружением. По причине декогеренции мы не видим кошек, одновременно бегущих в противоположных направлениях.

Как определить, что произошла декогеренция?

Декогеренцию можно обнаружить, например, по исчезновению интерференционной картины. Есть такой простой эксперимент «Welcher Weg» («который путь»). В нем, фактически, мы просто посылаем фотоны на светоделитель, через который фотон либо проходит (назовем это «путь 1»), либо отражается (назовем это «путь 2»). Затем с использованием зеркал мы сводим два пути в другой светоделитель, на каждом из выходов которого стоит детектор одиночных фотонов.

К примеру, если в этом эксперименте интерферометр (т.е. соотношение между длинами путей) изначально был настроен на то, что все фотоны выходят строго в одном из двух направлений выходного светоделителя. При декогеренции, т.е. разрушения состояния когеретной суперпозиции между путями, они будут выходить с вероятностью 1/2 в каждом из двух направлений.

Предположим, квантовый компьютер выполнял некую операцию и произошла декогеренция (например, на середине исполнения алгоритма Шора, или каких-либо более простых операций). Каков будет результат вычисления, чем он будет отличаться от вычисления на полностью когерентных кубитах?

Декогеренция будет приводит к искаженному результату вычислений (который, возможно, еще и будет меняться от запуска к запуску) в выходном квантовом регистре. Например, в результате выполнения алгоритма Шора для числа 15 мы будем получать не стабильно 3 и 5, а с какой-то вероятностью 3 и 5, и с какой-то вероятностью всевозможные иные результаты (2 и 4, 3 и 6 и т.д.)

Как бороться с декогеренцией? Можете ли Вы привести какие-то примеры? Сложнее ли сохранять когерентность в многокубитных системах?

Для борьбы с декогеренцией нужен контроль окружения, поскольку даже малейшее воздействие окружения может привести к декогеренции. Таким образом, нужно чтобы изучать квантовые суперпозиции, необходимо тщательно изолировать их от окружающей среды.

Интересно, что последнее обстоятельство породило концепцию квантового сенсора: раз квантовые состояния так чувствительны к внешним воздействиям, значит с их помощью можно проводить сверхчувствительные измерения. Недавно с помощью квантового сенсора на NV-центрах было проведено измерение сигнала от отдельного нейрона.

На практике для борьбы с декогеренцией используются низкие температуры и различные компенсационные схемы для медленно меняющихся флуктуаций в параметрах окружающей среды. Например, ученые научились обращать декогеренцию вспять в экспериментах с «спиновым эхо» (о нем чуть ниже).

В многокубитных системах сложнее балансировать между необходимостью заставить кубиты «слышать» друга друга и «разговаривать» между собой, и при этом «не слышать» окружение. Принципиальных физических ограничений для этого нет, но на пути к решению такой задачи есть ряд технологический затруднений.

Как долго сохраняется когерентность в современных кубитах?

Недавно ученые Мэрилендского университета построили устройство из пяти кубитов на основе ионов иттербия в электромагнитных ловушках (о ней N+1 писал). В частности, в этой работе, являющейся одной из самых свежих, это времена порядка секунд.

Насколько эта величина соответствует требованиям, предъявляемым концепцией квантовых компьютеров?

Нужно чтобы время когерентности превосходило время, за которое происходит вычисление и коррекция ошибок. Таким образом, достижимое время когерентности является достаточным чтобы проводить вычисления. Однако этого пока недостаточно, чтобы сделать полноценный и универсальный квантовый компьютер, поскольку для этого требуется долговременная память и другие элементы, в которых время когерентности должно быть больше. Другой интересный подход состоит в развитии топологических квантовых вычислений, которые являются устойчивыми к ошибкам.

Как связана декогеренция и коллапс волновой функции? Это про одно и то же?


Это «добрый полицейский» и «злой полицейский».


Суть обоих этих процессов состоит в утечке информации о состоянии квантовой системы в окружающую среду. Когда говорят о декогеренции, данный процесс представляется относительно плавным и растянутым во времени — как допрос доброго полицейского. В случае коллапса он подразумевается практически мгновенным и интенсивным — злому полицейскому нужны ответы сразу. И неважно что там с дальше будет с нашей квантовой системой.


Часто говорят о коллапсе волновой функции в момент измерения, хотя фактически измерение есть срежессированная версия декогеренции, при которой роль окружения берет на себя измерительный прибор, транслирующий информацию о квантовой системе на макроскопический уровень (условно говоря, на отклонение стрелки). Можно сказать, также, что коллапс волновой функции представляет собой предельный случай декогеренции.


А можно декогеренцию чуть-чуть сломать, а потом вернуть на место?


Исходя из природы процесса декогеренции понятно, что для обращения декогеренции требуется вернуть информацию, известную окружению о квантовой системе, обратно в квантовую систему, т.е. макроскопическому окружению требуется её «забыть». В общем, это очень сложно, поскольку процесс утечки информации является необратимым из-за того, что степеней свободы, в которых эта информация может храниться чрезвычайно много, и все они быстро обмениваются ей между собой. Поэтому чтобы вернуть все на свои места нужно достаточно хорошо контролировать окружение. Все как у людей, в общем.


Однако принципиально трюк по обращению декогеренции возможен, например, в эксперименте под названием «спиновое эхо». Его суть состоит в том, что время эволюции квантовой системы (например, ядерного спина) было гораздо меньше, чем время характерного изменения внешних условий (магнитного поля). Применяя специальную последовательность операций, можно обращать процесс утечке информации о квантовой системы вспять.

Подготовили материал Владимир Королев и Андрей Коняев

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.