Раньше его применяли как реагент
Американские химики применили иодид самария (II) в качестве катализатора радикальных реакций кетонов с алкенами. Для этого они разработали метод замены кислородных лигандов, координированных к самарию, на галогенидные, а также метод электрохимического восстановления самария (+3) в самарий (+2). Исследование опубликовано в Science.
Иодид самария SmI2 применяют в органической химии как одноэлектронный восстановитель. Например, он умеет отдавать электрон органическим соединениям с двойными связями углерод-кислород, превращаясь в соединения самария (+3). Обычно в таких реакциях двойная связь разрывается, кислород оказывается координированным к самарию, а на углероде возникает радикальный центр, способный вступать в превращения, характерные для радикалов. При этом для успешного протекания реакции нужно брать избыток иодида по отношению к исходным органическим веществам.
Химики под руководством Сары Райсман (Sarah E. Reisman) из Калифорнийского технологического института предположили, что иодид самария можно использовать не как реагент, а как катализатор — и брать гораздо меньшую его загрузку. Так как после реакции ионы самария (+3) координированы к атомам кислорода, химикам нужно было решить две задачи. Во-первых, научиться менять кислородные лиганды самария на исходные иодидные, и, во-вторых, научиться восстанавливать его до степени окисления +2.
Для разрыва связей самарий-кислород ученые предложили использовать слабую инертную кислоту — соль лутидина и бис(трифторметилсульфонил)имида в комбинации с иодидом лития. Для проверки своей гипотезы химики добавили к раствору изопропилата самария (III) в тетрагидрофуране иодид лития и выбранную кислоту, одновременно регистрируя циклическую вольтамперограмму. После добавления реагентов, как пишут химики, в вольтамперограмме наблюдалась картина, отвечающая окислительно-восстановительному переходу SmI3 в SmI2. То есть, предложенный метод замены кислородных лигандов на иодидные сработал.
Чтобы опробовать найденный метод, в качестве модельной реакции ученые выбрали классическое для самариевой химии радикальной присоединение кетонов к алкенам. Они смешали производное кетона циклогексанона с фенилакрилатом в присутствии десяти мольных процентов трифлата самария (III), иодида лития, выбранной кислоты и цинка в качестве восстановителя. В результате реакция не сработала, но при замене иодида лития на иодид магния реакция прошла с количественным выходом нужного продукта.
Далее ученые протестировали каталитическую реакцию на разных субстратах. Оказалось, что работает она не хуже, чем ее классический вариант с использованием избытка соли самария. Кроме того, химики показали, что вместо цинка можно использовать электрический ток при постоянном потенциале в −1,55 вольта. В этом случае на катоде восстанавливался самарий, а на аноде окислялся эфир Ганча — удобный органический восстановитель.
Так химики научились применять иодид самария в каталитических количествах, а не в избытке. Благодаря этому применять его будет удобнее и дешевле.
Ранее мы рассказывали о том, как химики оптимизировали уже известную реакцию диазотирования, чтобы сделать ее безопаснее.
Его стабилизировали объемными органическими группами
Немецкие химики впервые получили стабильный при комнатной температуре нитрен. Они синтезировали его из стерически затрудненного азида и охарактеризовали с помощью рентгеновской дифракции и ЭПР-спектроскопии. Исследование опубликовано в журнале Science.