Степень поляризации и запутанность света проиллюстрировали механической аналогией

У этих величин нашлась геометрическая и динамическая интерпретация

Физики научились сопоставлять электромагнитным волнам системы материальных точек, механические параметры которых численно совпадают с характеристиками исходной волны: степенью поляризации и мерой квантовой запутанности. При этом соотношение, которое связывает эти две величины, на языке механической аналогии сводится к теореме Пифагора. Статья опубликована в Physical Review Research.

Аналогии между физическими системами упрощают жизнь ученых, даже если системы имеют разную природу и похожи только их математические описания. Например, стандартный прием в квантовой теории поля при конечной температуре — формальная замена обратной температуры на фиктивное время (которое изначально отсутствует как переменная). Это позволяет пользоваться при вычислениях хорошо изученным математическим аппаратом обычной квантовой теории поля (в которой, в свою очередь, нет температуры), а затем интерпретировать результаты уже для исходной модели с температурой. Поиск подобных аналогий и проверка границ их применимости — одно из актуальных направлений в сегодняшней науке.

Цянь Сяофэн (Xiao-Feng Qian) и Мигаш Изади (Misagh Izadi) из Технологического института Стивенса предъявили количественное описание свойств электромагнитной волны через аналогию с механической системой материальных точек.

Авторы оперировали с тремя собственными значениями матрицы когерентности световой волны (матрицы 3×3, которая составлена из попарных скалярных произведений трех компонент волны друг на друга). Сначала через эти собственные значения исследователи выразили степень поляризации волны (число в диапазоне от 0 до 1, где 0 отвечает полностью неполяризованной волне, с равными и некоррелированными амплитудами по каждой координатной оси) и меру запутанности состояния волны (также число между 0 и 1, где 0 соответствует нулевой запутанности, то есть чистому состоянию). Выяснилось, что независимо от величины собственных значений сумма квадратов степени поляризации и меры запутанности равна единице.

Далее физики рассмотрели систему из трех материальных точек, которые размещены в вершинах правильного треугольника, вписанного в единичную окружность. Массы материальных точек ученые положили равными собственным значениям матрицы когерентности.

Поскольку собственные значения не обязаны быть равными, центр масс такой системы вообще говоря не совпадает с геометрическим центром. Авторы заметили, что длина отрезка, который соединяет эти центры, совпадает со степенью поляризации волны, а мера запутанности равна длине перпендикулярного отрезка, который соединяет центр масс с точкой на единичной окружности. Сумма квадратов этих величин по теореме Пифагора совпадает с радиусом окружности, а значит равна единице — то есть оптическое соотношение в механической аналогии выполняется тождественно, из геометрии.

Наконец, исследователи обнаружили, что аналогия не исчерпывается сопоставлением характеристик световой волны и длин отрезков. Оказалось, что поляризацию можно вычислять еще и как корень из разности моментов инерции механической системы относительно осей, проходящих через геометрический центр и центр масс перпендикулярно линии, которая соединяет эти центры — это справедливо благодаря теореме Гюйгенса — Штейнера.

В рамках исследования упростить какие-либо вычисления не удалось, ведь чтобы ввести механическую систему, нужно заранее знать собственные значения матрицы когерентности, а имея их, можно вычислить степень поляризации и меру запутанности и без всяких аналогий. Тем не менее, авторы отмечают, что механическая аналогия имеет ряд других преимуществ: дает дополнительную наглядную интерпретацию поляризации и запутанности, а также легко обобщается на произвольную размерность пространства (для N-мерной волны материальные точки следует расположить в вершинах правильной фигуры в пространстве размерности N - 1, а общие соображения остаются прежними).

Заманчивые аналогии не всегда оказываются верными: ранее мы писали о том, как физики исключили аналог второго закона термодинамики для энтропии запутанности.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Задачу коммивояжера решили одним кубитом

Пока только для шести городов