Алгоритм уменьшает время простоя на 78 процентов
Инженеры из Японии создали алгоритм машинного обучения, который автоматически стимулирует таракана-киборга больше двигаться и не позволяет ему долго оставаться в одном месте. Движение таракана контролируется с помощью электроимпульсов, генерируемых рюкзачком с системой дистанционного управления. Алгоритм увеличил на 70 процентов среднюю дистанцию, пройденную киборгом, и снизил время простоя таракана на 78 процентов. Статья опубликована в Cyborg and Bionic Systems.
Миниатюрные роботы могут пригодиться в самых разных сферах: от ремонта авиационных двигателей до поиска выживших под завалами. Однако из-за недостаточной развитости компактной компонентной базы, в особенности актуаторов и источников питания, это все еще сложная инженерная задача, и большинство проектов остаются на уровне лабораторных прототипов.
Одно из альтернативных решений состоит в использовании живых организмов, например, тараканов или даже летающих насекомых, которые уже обладают способностью к эффективному передвижению. В их организм внедряют электроды, через которые подключаются электронные модули, контролирующие перемещения насекомого за счет электростимуляции. Однако насекомые-киборги не полностью контролируются электронными системами. Они сохраняют свои особенности поведения, которые могут ограничивать их перемещение. Например, мадагаскарские свистящие тараканы, которые часто используются в экспериментах, склонны к снижению активности в ярко освещенных областях и при недостаточно высокой температуре. Кроме того, они предпочитают бегать вдоль стен, а не по открытым пространствам. Это приводит к сложностям в использовании насекомых-киборгов и требует оптимизации стимулирующих сигналов управления.
Группа инженеров под руководством Кейсуке Морисима (Keisuke Morishima) из Университета Осаки внедрила в систему управления тараканом-киборгом алгоритм машинного обучения, который позволяет автоматически стимулировать передвижение насекомого, чтобы оно не оставалось на одном месте. Так же, как и предыдущие исследователи, инженеры использовали особь мадагаскарского шипящего таракана из-за его больших размеров, достигающих семи сантиметров. Для передачи стимулирующих сигналов в усикообразные органы в задней части таракана (церки) были имплантированы платиновые электроды, соединенные медными проводами с приклеенным на спину насекомого шестиграммовым рюкзачком с электронными компонентами.
Данные о движении насекомого получают с помощью встроенного в рюкзак инерционного измерительного модуля, который с помощью акселерометра и гироскопа определяет текущие линейное ускорение и угловую скорость таракана. Эта информация по беспроводному каналу связи передается на персональный компьютер на вход алгоритма машинного обучения. Из данных, разбитых на окна по 1,5 секунды, извлекаются признаки, которые затем поступают на вход классификатора, определяющего двигается насекомое или нет. В случае, если таракан остается неподвижным дольше заданного времени, на его церки подаются электрические импульсы. Наиболее эффективным алгоритмом классификации в представленной задаче оказался метод опорных векторов.
Для экспериментов инженеры построили арену в форме окружности, над которой разместили камеру для отслеживания реального положения насекомого. Без дополнительной электростимуляции три таракана, использованные в тестах, стремились оставаться в периферийной области у стен арены и избегали открытого пространства большую часть времени. Использование алгоритма и электростимуляции позволило снизить время простоя в среднем на 78 процентов, а время поиска пройденную дистанцию увеличить на 68 и 70 процентов соответственно. При этом среднее время электростимуляции для всех тараканов составило всего 3,4 секунды. Таким образом алгоритм позволяет снизить количество сигналов электростимуляции и тем самым предотвратить утомление животного.
Ранее мы рассказывали про американских инженеров, которые разработали носимую поворотную монохромную камеру для жуков и микророботов. Благодаря ее небольшой массе, которая составляет менее четверти грамма, насекомые с ней могут свободно двигаться и балансировать.
Компания тренирует флот роботов выполнять задачи для BMW
Робототехническая компания Figure показала свой прогресс в разработке человекоподобных роботов второго поколения. За три месяца с момента первой презентации они стали выполнять задачи в четыре раза быстрее, а точность и безошибочность их действий возросла в семь раз. Сейчас компания тренирует целый флот моделей F.02, обучая их выполнять конкретные задачи для автопроизводителя BMW. Роботы занимаются сортировкой и установкой автодеталей: задействуя обе руки, они захватывают листы металла и устанавливают их в пазы с точностью менее сантиметра. По словам основателя компании Бретта Эдкока (Brett Adcock), эта задача оказалась исключительно сложной. Потребовалась переработка системы управления роботов, включая разработку новых нейронных сетей, способных масштабироваться на весь парк роботов, и алгоритмов точного захвата и позиционирования объектов. В текущей версии роботы F.02 уже могут выполнять до 1000 установок в день в полностью автономном режиме, но это не предел и скорость может быть значительно увеличена в будущем.