Она обучается, меняя жесткость связей
Ученые из Нидерландов и США создали электромеханическую нейросеть, в которой веса задаются не в цифровом виде, а через изменяемую жесткость элементов. Получая на вход усилия, она преобразует их в соответствии с весами, установленными в результате обучения. Статья о разработке опубликована в Science Robotics.
Как естественные, так и искусственные нейросети состоят из нейронов, передающих друг другу сигналы. Пожалуй, главная особенность нейросетей заключается в том, что поведение связей, через которые проходят сигналы, изменчиво. В процессе обучения они получают разный вес, который влияет на передаваемый сигнал. В классических искусственных нейросетях эти значения задаются в виде цифровых данных, хранящихся в компьютере.
Несмотря на то, что сегодня практически все вычисления в мире делаются на электрических компьютерах, есть проекты, в которых ученые и инженеры создают вычислительные машины, работающие без электричества, или в которых таким образом работает их основная часть. К примеру, NASA финансирует и рассматривает такие проекты в качестве потенциального решения для миссий на поверхности Венеры, где из-за экстремальных условий атмосферы использовать обычные компьютеры затруднительно. В этой области разрабатываются и неэлектронные нейросети, например, на основе стеклянных пластин, классифицирующих изображение за счет рассеяния света.
Ученые под руководством Джонатана Хопкинса (Jonathan B. Hopkins) из Калифорнийского университета в Лос-Анджелисе создали нейросеть, в которой используется электроника, но сам процесс передачи сигнала основан исключительно на механических взаимодействиях элементов.
В новой нейросети связи между нейронами состоят из элементов с переменной жесткостью, которая выполняет роль веса. Переменная жесткость обеспечивается за счет линейных актуаторов на основе катушки индуктивности. Также в нейросети есть датчики, отслеживающие смещение узлов сети (нейронов). Всего в ней используется 21 элемент с переменной жесткостью, актуаторы на нейронах первого слоя и две камеры, отслеживающие смещения последних двух элементов.
Во время работы, как и в классических искусственных нейросетях, на вход подаются данные (в этом случае силы, прилагаемые в двух входящих узлах), а на выходе получается результат в виде смещения двух последних узлов. При обучении нейросеть начинает со случайных значений жесткости каждого элемента, а затем при помощи алгоритма оптимизации подстравает их так, чтобы в ответ на определенные входящие данные выдавался соответствующий результат.
Сначала авторы успешно проверили работу такой нейросети, симулировав восьмислойную сеть с гораздо большим количеством узлов и обучив ее десяти задачам (под этим авторы подразумевали получение набора смещений выходных нейронов в ответ на набор сил на входных). Затем они сумели реализовать это и на собранном устройстве, обучив ее двум задачам.
В качестве потенциального применения ученые предложили использовать нейросети такого типа в самолетах, чтобы автоматически изгибать крыло в зависимости от текущей аэродинамической нагрузки.
Ранее мы рассказывали о 3D-печатной нейросети, работающей на терагерцевом излучении. Она состоит из нескольких пластин, в которых веса реализованы в виде разной толщины областей в каждой из пластин.
Спутники обеспечат сотовой связью удаленные регионы планеты
SpaceX завершила развертывание на орбите первой спутниковой группировки Starlink, предназначенной для обеспечения сотовой связью удаленных регионов Земли. Спутники способны поддерживать прямую двустороннюю связь с немодифицированными LTE-телефонами, обеспечивая скорость обмена данными до 10 мегабит в секунду, сообщает New Atlas.