Ученые предложили новый вариант оптической нейросети, которая представляет собой стекло со специальной внутренней структурой. Разработка подходит для решения задачи классификации изображений, например, распознавания рукописных цифр. При направлении на вход такой нейросети данных в виде волнового фронта из-за специфического рассеяния внутри энергия концентрируется в области одного из возможных выходов. Преимуществом такой нейросети является полная пассивность, благодаря чему она не потребляет энергии при работе, пишут ученые в журнале Photonics Research.
Искусственные нейросети — это один из подходов к созданию ограниченного искусственного интеллекта, изначально вдохновленный строением нервной системы живых существ. Подобно мозгу человека, нейросеть также состоит из функциональных элементов, которые принимают сигналы от нескольких других элементов, преобразуют их согласно определенному правилу и передают дальше. На этом близкое соответствие заканчивается, так как структура связей в природных и искусственных нейросетях принципиально разная.
Обычно нейросети реализуют в виде компьютерных программ, которые реализуют соответствующие вычисления. Тем не менее, уже были созданы аналоговые варианты, в которых вычисления производятся специально созданными волноводами или дифракцией на особых пластинах.
В новой работе ученые исследовали возможность реализации нейросети в виде куска стекла с неупорядоченной структурой, внутри которого размещены неоднородности: пузырьки воздуха и примеси графена. При прохождении фронта электромагнитной волны он особым образом рассеивается на этих неоднородностях, при этом фокусируется в определенных точках на выходе. Авторы называют разработку нанофотонной нейросредой (nanophotonic neural medium).
Исследователи выбрали относительно несложную задачу классификации рукописных цифр. В таком случае на вход подается белое изображение начертания цифры на черном фоне, а выходы соответствуют различным распознанным цифрам. Обучение состоит в оптимизации внутренней структуры, то есть расположения пузырьков и примесей, которое максимизирует правильность классификации.
Теоретически обучение можно проводить при помощи материалов с настраиваемыми свойствами, но в рамках данной работы ученые использовали компьютерное моделирование. Точность двумерной модели составила около 79 процентов, а трехмерной — 84 процента. Ученые пишут, что это связано со специально наложенными ограничениями, которые позволяют в реальности изготовить такое устройство. Без подобных ограничений оптимизация может выдавать чересчур полые структуры.
Авторы считают результаты впечатляющими, но возможность применять подобные изделия на практике неочевидна. С одной стороны, у такой нейросети есть безусловные преимущества в виде отсутствия необходимости в питании и потенциальной дешевизне получения в больших масштабах, а с другой — текущий вариант невозможно изменить после изготовления, что ограничивает каждое изделие одной специальной задачей. Также обучение под конкретную задачу оказывается весьма трудоемким процессом.
Ранее нейросети научили рисовать сложные сцены по текстовому описанию, генерировать лицо по голосу и распознавать отредактированные в Photoshop лица. Однако большинство нейросетей по-прежнему легко можно обмануть и заставить выдавать неправильный ответ: в частности, программу для распознавания образов можно запутать поворотом объекта.
Тимур Кешелава
Наблюдения проводили в США
Джейсон Нагата (Jason Nagata) из Калифорнийского университета в Сан-Франциско с коллегами провел проспективное когортное исследование и пришел к выводу, что повышение времени пользования социальными сетями у подростков связано с более низкими показателями когнитивных функций. В работу включили данные 6554 участников (51,1 процента — мужского пола) долгосрочного исследования ABCD. Данные анализировали в трех временных точках: на исходном уровне (2016–2018 годы, возраст 9–10 лет), через год (2017–2019) и два (2018–2020). Траектории пользования соцсетями выявляли групповым моделированием, когнитивные функции измеряли инструментом NIH Toolbox, связь между ними устанавливали множественными линейными регрессионными анализами. Результаты проведенного исследования опубликованы в JAMA: The Journal of the American Medical Association.