Китайские физики подробно исследовали внутреннюю динамику, сопровождающую механические релаксации металлических стекол при различных температурах. Они проанализировали ее параметры у множества стекол и жидкостей, а также провели детальные симуляции застеклованных и жидких атомов алюминия и лантана. Ученые доказали, что часть атомов в металлических стеклах движется подобно жидкости по нитеподобным траекториям даже при холодных температурах, что делает такие материалы примером гибридного агрегатного состояния. Исследование опубликовано в Nature Materials.
В обыденной жизни человек имеет дело всего с тремя агрегатными состояниями: газами, жидкостью и твердыми телами. В лабораториях же граница между ними могут размываться. Например, часть атомов твердого тела может быстро по нему перемещаться, напоминая в своем движении жидкость. Наиболее ярким примером такой экзотической фазы стал суперионный лед, в котором ионы кислорода формируют кристаллическую решетку, а ионы водорода свободно между ними перемещаются. Другим примером можно назвать синтетические твердые тела со сверхтекучестью. В этом случае атомы формируют периодическую решетку благодаря оптическим ловушкам.
Вместе с тем, довольно логичным местом поиска такого гибридного состояния кажутся стекла, поскольку их принято считать жидкостями, охлажденными настолько, что они затвердевают в аморфной фазе. Однако достоверно подтвердить, что в стеклах могут существовать жидкоподобные атомы, никому не удавалось, хотя некоторые намеки на такую физику проглядывались в двумерных листах аморфного диоксида кремния и плотноупакованных металлических стеклах.
Китайские физики под руководством Хайя Яна Байя (Hai Yang Bai) из Института физики Китайской академии наук решили детальнее разобраться в этом вопросе. Поскольку быстрая атомная динамика в оксидных стеклах, которая могла бы свидетельствовать о жидкопободном поведении, хорошо объясняется с помощью иерархии химических связей, авторы сфокусировались на металлических стеклах, где межатомное взаимодействие гораздо проще. Они собрали вместе большое количество экспериментальных данных о внутреннем трении в различных металлических стеклах и с помощью симуляций методом молекулярной динамики показали, что их можно интерпретировать как доказательство того, что часть атомов в таких средах ведет себя словно жидкость, текущая по нитеподобным траекториям.
Типичный эксперимент по измерению внутреннего трения заключается в приложении в образцу периодического механического воздействия и наблюдению за тем, как затухание колебаний зависит от частоты и температуры. Зависимость модуля потерь в металлических стеклах от температуры обладает тремя пиками: двумя высокотемпературными (α- и β-релаксации), отвечающими за локальные смещения атомов, и одним низкотемпературным (быстрая релаксация). Последнюю было принято считать предшественником β-релаксации, которая, как ожидалось, превратится в нее по достижении нужной температуры.
Первое, на что обратили физики из группы Байя, стала энергия активации. Они сравнили этот параметр для нескольких металлических стекол (Y68,9Co31,1, Ce70Cu20Al10 и Al90La10) и для соответствующих жидкостей с помощью подгонки того, как пика быстрой релаксации зависит от температуры, с помощью уравнения Аррениуса. Оказалось, что в первом случае энергии активации равны 0,60, 0,46 и 0,47 электронвольт, соответственно, а во втором — 0,63, 0,47 и 0,41 электронвольт. Такая близость значений не только намекает на жидкостный характер динамики быстрой релаксации в стеклах, но и подчеркивает его универсальность. Похожий результат дало исследование вязкостей при жидкоподобной релаксации: они оказались близки к значению 107 паскаль-секунд, что сопоставимо с вязкостями соответствующих жидкостей и на шесть порядков меньше, чем вязкости образцов целиком при температуре стеклования.
Однако наиболее убедительным свидетельством стали прямые симуляции методом молекулярной динамики. Физики моделировали 4000 атомов стекла Al90La10 в кубическом ящике с периодическими граничными условиями при различных температурах. Симуляция в застеклованном образце показала, что все атомы лантана колеблются в окрестностях своих положений равновесия. Часть атомов алюминия, напротив, может смещаться на большие расстояния, если области, в которых они находились, сильно разупорядочены.
Более того, оказалось, что совокупности таких участков стекла образуют нитеподобные пути, по которым бежит коллективная атомная жидкость. Другими словами, атомы смещаются по цепочке друг за другом, что выражается в пике парных корреляционных функций их смещений в окрестностях 0,25 нанометров. Скорость нитеподобной диффузии замедляется по мере охлаждения, хотя доля атомов, участвующих в ней, растет. Симуляции оказались в хорошем согласии с результатами опытов при комнатной и низкой температурах.
Проделанная китайскими физиками работа выглядит убедительным доказательством того, что некоторые стекла на самом деле представляют собой гибридное агрегатное состояние, как при комнатной, так и при более холодных температурах. Это делает физику стеклоподобных и аморфных тел еще более загадочной и интересной.
Новое исследование перекликается с результатами другого моделирования, проделанного недавно японскими физиками. Они также симулировали поведение стекол и обнаружили в них нитеподобные атомные колебания, правда, их целью была интерпретация бозонного пика в аморфных телах. Вероятно, и тем, и другим, могут помочь американские экспериментаторы, которые приспособили электронный микроскоп для трехмерного поатомного сканирования аморфных наноструктур.
Марат Хамадеев
Редкий процесс рассмотрели в совместном массиве данных экспериментов CMS и ATLAS
На Большом адронном коллайдере впервые нашли убедительные следы редкого распада бозона Хиггса на Z-бозон и фотон. Его увидели со статистической точностью в 3,4σ в объединенных данных экспериментов CMS и ATLAS по протон-протонным столкновениям за 2015-2018 года. Обнаруженный сигнал совпал с предсказаниями Стандартной модели, но в будущем подробное изучение распада поможет в поиске различий между теорией и экспериментом. О своих результатах физики рассказали на конференции LHCP-2023, подробнее об открытии сообщается в сопровождающей записке. Бозон Хиггса — знаменитая элементарная частица, объясняющая существование инертной массы у ряда частиц Стандартной модели. Существование этой частицы теоретически предсказал Питер Хиггс еще в 1964 году, а в 2012 году ее обнаружили эксперименты CMS и ATLAS на Большом адронном коллайдере. Бозон Хиггса стал последней экспериментально открытой частицей Стандартной модели, но на этом его исследование не закончилось. Те же самые ATLAS и CMS продолжили изучать свойства бозона, в числе которых — каналы его распада и сила его взаимодействия с другими частицами. Почти все предсказываемые Стандартной моделью свойства бозона Хиггса удалось подтвердить. Но некоторые из распадов этой частицы чрезвычайно редкие, поэтому чтобы увидеть и изучить их необходимо накопить особенно большой массив экспериментальных данных. Один из таких распадов — канал в один переносчик слабого взаимодействия Z-бозон и один фотон. Согласно теории, для бозона Хиггса с массой в 125 гигаэлектронвольт доля этого распада среди всех остальных — примерно 0,15 процента. Именно в такие редкие распады физики изучают в поисках расхождения экспериментальных данной со Стандартной моделью, у которой не получается объяснить ряд проблем в современной физике. Отклонение вероятности такого распада от стандартных теоретических предсказаний могло послужить аргументом в пользу моделей, в которых бозон Хиггса на самом деле нейтральный скаляр или сложная частица. Это же может указать на правдивость теорий с дополнительными еще не открытыми бесцветными заряженными частицами, которые взаимодействуют с бозоном Хиггса через петлевые поправки. Теперь же ученым впервые удалось рассмотреть распад бозона Хиггса на Z-бозон и фотон в результатах экспериментов CMS и ATLAS. Физики проанализировали данные, накопленные за 2015-2018 года в ходе протон-протонных столкновений при энергии в системе центра масс в 13 тераэлектронвольт. Z-бозон искали через продукты уже его распада на мюонную или электрон-позитронную пару с массой больше 50 мегаэлектронвольт. Сам распад идентифицировали через пик инвариантной массы пары Z-бозона и фотона в окрестности массы бозона Хиггса — 125 гигаэлектронвольт. Для увеличения чувствительности анализа данных к изучаемому распаду все события-кандидаты разделяли на несколько категорий в зависимости от канала рождения бозона Хиггса, накладывали ограничения на кинематику продуктов распада, а также использовали машинное обучение. В результате физики увидели искомый распад со статистической точностью в 2,2σ для данных ATLAS и 2,6σ для данных CMS, что в сумме дало статистическую точность в 3,4σ. Также ученые оценили силу сигнала µ — отношение наблюдаемого в эксперименте произведения сечения и вероятности распада бозона Хиггса на Z-бозон и фотон к предсказываемому Стандартной моделью значению. Полученное значение µ = 2.2 ± 0.7 хоть и говорит о результате в два раза больше теоретических предсказаний, но из-за высокой погрешности согласуется с теорией со статистической точностью в 1,9σ. При этом доля изучаемого распада бозона Хиггса среди других его распадов оказалась равной (3.4 ± 1.1) × 10−3. Таким образом, для проверки предсказаний Стандартной модели в данном канале распада все еще требуется больше экспериментальных данных. Это далеко не первый редкий распад бозона Хиггса, который зарегистрировали на Большом адронном коллайдере. К примеру, ранее те же эксперименты CMS и ATLAS увидели канал распада на два мюона. А о том, как и почему для изучения таких редких распадов собираются строить электрон-позитронную хиггсовскую фабрику, можно почитать в нашем материале «100 ТэВ на перспективу».