Американские геологи выяснили, что гляциоизостазия (поднятие и опускание территории под весом ледника) контролировала масштаб и направление катастрофических потоков в плестоцене на Колумбийском плато — одних из крупнейших известных паводков на Земле. Сегодня плейстоценовый сток вод выражен в рельефе сетью сухих русел и каньонов Чаннелд-Скаблендс. Результаты исследования подчеркивают влияние гляциоизостазии на эволюцию ландшафта. Статья опубликована в Proceedings of the National Academy of Sciences.
Во время ледниковых периодов рост и деградация ледниковых щитов деформировали земную кору. Тяжелые массы льда вдавливали литосферу в вязкую астеносферу, вызывая проседание территории. И напротив, при таянии льда земная поверхность приподнималась. Такую реакцию литосферы на ледниковую нагрузку называют гляциоизостазией.
В конце плейстоцена обширные ледяные щиты укрывали Северную Америку. 18 тысяч лет назад одна из лопастей ледника перегородила долину реки Кларк-Форк. За 600-метровой ледяной плотиной выросло озеро, которое вскоре разлилось под напором талой воды. После опустошения котловины естественная плотина восстановилась. Этот цикл наполнения и спуска озера повторялся десятки раз. Серия катастрофических потоков прорезала глубокие каналы в Колумбийском плато. В современном ландшафте эти события отражает Чаннелд-Скаблендс, территория с крутыми каньонами и многочисленными ложбинами. Гляциоизостазия, вероятно, повлияла на древние потоки. Однако при их реконструкции часто используют современный рельеф и не учитывают воздымание и опускание территории.
Группа исследователей из Соединенных Штатов под руководством Тамары Пико (Tamara Pico) из Калифорнийского технологического института решила проверить, мог ли вес ледяных покровов повлиять на направление и масштаб паводков в Чаннелд-Скаблендс. Для этого ученые рассчитали гляциоизостатические изменения рельефа при помощи модели GI31-ANUED-PC2. Затем был смоделирован сток вод для современного рельефа и с поправкой на гляциоизостазию 18 и 15,5 тысячи лет назад. Для большинства симуляций использовали значение расхода воды 6 × 106 кубических метров в секунду, а продолжительность паводка ограничили 21 и 34 часами.
Оказалось, что Кордильерский ледяной щит вызвал проседание поверхности к северу от Чаннелд-Скаблендс более чем на 200 метров, а территория к югу и востоку приподнялась почти на 100 метров относительно современных отметок. Такой наклон рельефа определил строение долин и объем озерной котловины. Самые большие перепады высот модель показала 15,5 тысячи лет назад, когда выросла новая лопасть покровного ледника.
При прорыве озера 18 тысяч лет назад потоки устремились в Чаннелд-Скаблендс и размыли 44 и 35 процентов его западного и восточного участков. 15,5 тысяч лет гляциоизостазия сместила сток вод на запад, где 40 процентов территории подверглось эрозии, в то время как на востоке всего четыре. Моделирование стока для современного рельефа показало, что аналогичный прорыв озера сегодня размыл бы больше половины площади Чаннелд-Скаблендс.
Гляциоизостазия повлияла на распределение паводков и масштабы эрозии на Колумбийском плато. Так, потоки сильнее прорезали восток территории во время ранних разливов озера из-за меньшего уклона. 15,5 тысячи лет назад воздымание восточной области перенаправило сток вод на запад Чаннелд-Скаблендс. Поскольку ландшафты чувствительны к деформации земной коры, это исследование подчеркивает необходимость учета гляциоизостазии при реконструкции рельефа.
Ранее мы писали про гляциоизостатические движения, которые вызваны таянием ледников в XXI веке, и ледниковое выпахивание Скандинавского щита в плейстоцене.
Елена Гарова
Моделирование показало, что эта магма содержит больше расплава, чем считалось ранее
С помощью сейсмотомографического моделирования ученые уточнили фазовый состав и картину распределения вещества в магматическом резервуаре под Йеллоустонской кальдерой. Выяснилось, что вещество с большей долей расплава концентрируется в 3–8 километрах от поверхности. Содержание жидкой фазы в этой магме оказалось выше, чем считалось ранее, и составило 16–20 процентов. Об исследовании сообщает статья в журнале Science. Вулканические извержения, при которых объем выбросов превышает 1000 кубических километров, часто называют мега-, или суперизвержениями. Они не только производят разрушительные изменения на большой территории, но и оказывают глобальное воздействие на климат. Они могут происходить в зонах субдукции (например, извержение вулкана Тоба, случившееся 74 тысячи лет назад) или в областях внутриплитного магматизма, таких как Йеллоустонская горячая точка на северо-западе США. Она формирует континентальный супервулкан, питающийся главным образом из резервуара с кислой и вязкой риолитовой магмой, которая близка по составу гранитным породам. Разгрузка такого очага, как правило, происходит в форме чрезвычайно мощного взрыва. Последнее катастрофическое эксплозивное извержение Йеллоустонского супервулкана произошло около 640 тысяч лет назад и предположительно состояло из двух событий, вызвавших последовательно две вулканические зимы. После опустошения магматического очага его риолитовая кровля просела, образовав огромную кальдеру площадью 7500 квадратных километров. Менее мощные извержения риолитовых лав случались и позднее, от 180 до 70 тысяч лет назад. Данные современных наблюдений за газовыми и гидротермальными выбросами, мониторинг смещений грунта и землетрясений говорят о том, что Йеллоустонский супервулкан остается активным до сих пор. Чтобы более уверенно судить о состоянии супервулкана, ученые моделируют строение магматического очага и характеристик его содержимого, используя метод сейсмической томографии. Так, с его помощью удалось установить, что мантийный плюм под Йеллоустонской горячей точкой устроен сложнее, чем считалось раньше. Сейсмотомография основана на инверсии (обращении) данных о времени пробега сейсмических волн в количественное описание физических свойств геологической среды, например, плотности породы. Инверсия позволяет построить визуальную модель границ очага, определить состав вещества в нем и оценить фазовые отношения, то есть степень кристалличности магмы, и, следовательно, ее способности к перемещению. Считается, что при содержании кристаллов в среднем более 60 процентов магма начинает вести себя как твердое тело. Такую смесь называют «кристаллической кашей». Сейсмотомографическая модель, построенная для поперечных волн, показала, что под Йеллоустонской кальдерой и далеко за ее пределами существует обширная область, где они замедляются. Ее интерпретировали как большое магматическое тело, простирающееся на глубинах 5–15 километров, в котором на долю жидкой фазы приходится всего около 10 процентов. Однако из-за недостаточного разрешения эта модель страдала неточностью и не согласовывалась с данными петрологических исследований туфа из отложений последнего мощного взрыва Йеллоустонского супервулкана. Для уточнения модели американские геофизики во главе с Россом Магуайром (Ross Maguire) из Иллинойсского университета применили метод полной инверсии поля поперечных сейсмических волн. В этом методе трехмерная численная модель многократно модифицируется путем сравнения с полевыми данными, включая сейсмические события, которые в стандартных алгоритмах трактуются как шум. После 10 итераций исследователи получили модель, в которой несоответствия с наблюденными данными были снижены на 50 процентов. По результатам моделирования выяснилось, что скоростные аномалии поперечных волн распределяются неоднородно. Наибольшее замедление волн (более чем на 30 процентов, до величины 2,3 километра в секунду), соответствующее увеличению доли жидкой фазы, обнаружилось ближе к поверхности, на глубинах от трех до восьми километров. Пиковое падение скорости ― до 2,15 километра в секунду ― ученые получили для пятикилометровой глубины в области, несколько смещенной к востоку от центра кальдеры. Эти значения коррелируют с петрологией туфов формации Лава-Крик, сформировавшихся из тефры последнего катастрофического извержения. По данным анализа, давление, под которым находился породивший их риолитовый расплав, составляло 80–150 мегапаскалей, а это соответствует диапазону глубин от трех до шести километров. Зона постепенно убывающих отрицательных скоростных аномалий под кальдерой простирается до глубины около 35 километров. Кроме того, на сейсмотомограмме присутствуют и другие низкоскоростные области, расположенные в средних (около 20 километров глубины) и нижних (около 40 километров) слоях коры. Это означает, что система магматических резервуаров Йеллоустонского супервулкана более сложна, чем полагали ученые до сих пор, и вещество в них дифференцировано по фазовому составу в зависимости от глубины. Наибольшее содержание расплавленной фазы Магуайр и его коллеги оценивают в 16–20 процентов ― выше, чем получалось в прежних моделях. Такая смесь все еще ведет себя как твердое тело, но ее дифференциация может отражать некоторую динамику в развитии магматического очага. Ученые полагают, что он способен существовать в состоянии «кристаллической каши» не менее 100 тысяч лет, на протяжении которых должна медленно происходить фазовая дифференциация. По достижении порогового содержания расплава от 35 до 50 процентов магма обретет подвижность, и после этого взрывное опустошение резервуара произойдет сравнительно быстро, в ближайшие 5000 лет. Суммарный объем кислого расплава, по подсчетам исследователей, составляет не менее 1600 кубических километров. Нельзя полностью исключать и вероятности ускоренной разгрузки магматического очага. Такой сценарий возможен при образовании небольших по объему «карманов» с концентрированным расплавом или в случае проскальзывания в вязкой высококристалличной среде из-за деформации. Однако авторы модели подчеркивают, что никаких непосредственных признаков приближающегося извержения она не выявляет, а лишь помогает детализировать картину строения и циклов активности Йеллоустонского супервулкана. N + 1 уже рассказывал об исследованиях Йеллоустонской горячей точки. Мы сообщали о том, как геологи построили схему глубинного строения ее гидротермальной системы и нашли в Йеллоустоне следы двух ранее неизвестных древних суперизвержений.