Тринадцатиполосные суслики во время спячки не едят до шести месяцев. В результате в их организм не поступает азот, что чревато нарушениями белкового обмена и деградацией мышечной ткани. Справиться с этой проблемой сусликам помогают кишечные бактерии. Симбионты преобразуют производимую грызунами мочевину в аммиак, позволяя повторно использовать содержащийся в ней азот для производства белков. Кроме того, они помогают экономить воду. Как отмечается в статье для журнала Science, такой механизм впервые описан для впадающих в спячку млекопитающих.
Многие млекопитающие, от однопроходных и сумчатых до грызунов и приматов, впадают в спячку, чтобы пережить трудные времена. Например, обитающие в Северной Америке тринадцатиполосные суслики (Ictidomys tridecemlineatus) проводят в этом состоянии до шести месяцев. Спящие грызуны ничего не едят, что позволяет им справиться с зимней бескормицей. Однако во время долгого голодания в их организм не поступает азот, а это чревато сбоями белкового обмена и разрушением мышечной ткани. Исследования показывают, что суслики успешно справляются с данной проблемой: в течение зимы их мышечная масса практически не уменьшается, а незадолго до пробуждения скорость синтеза белка в мышцах даже увеличивается до уровня активного сезона. Тем не менее, до сих пор оставалось неясным, как именно им это удается.
Команда биологов под руководством Ханны Кэри (Hannah V. Carey) из Висконсинского университета в Мэдисоне решила проверить гипотезу, согласно которой суслики переживают зиму благодаря помощи уреолитических бактерий кишечника. Предполагается, что эти симбиотические микроорганизмы перерабатывают мочевину в аммиак, поддерживая тем самым запасы азота и синтез белков в организме хозяев. Такой механизм рекуперации азота ранее был описан для жвачных (Ruminantia) и некоторых нежвачных млекопитающих, но не у впадающих в спячку видов.
Кэри и ее коллеги проанализировали метаболизм сусликов в разные периоды года: летом, когда эти грызуны активны; в первый месяц спячки и голодания; а также на третий-четвертый месяцы спячки. Исследователи делали подопытным грызунам по две инъекции 13C, 15N-мочевины, а затем отслеживали судьбу этих изотопов. Чтобы оценить роль симбиотических бактерий в этом процессе, часть особей обработали антибиотиками.
Как и у других млекопитающих, мочевина в организме сусликов синтезируется в печени, после чего попадает в кровоток и выводится почками. Однако некоторое количество мочевины благодаря работе эпителиальных белков-переносчиков выделяется в просвет кишечника, где уреолитические бактерии гидролизуют ее до аммиака и углекислого газа. Кэрри с коллегами выяснили, что зимой концентрация мочевины в плазме крови сусликов ниже, чем в летний период. Также они обнаружили, что у особей, которые не получили инъекцию мочевины, количество белков-переносчиков данного соединения в слепой кишке в конце зимы примерно втрое выше, чем летом. Возможно, низкая концентрация мочевины в крови во время спячки компенсируется более активным переносом этого соединения в кишечник.
Обработка сусликов антибиотиками в летний период привела к более активной экспрессии эпителиальных белков-переносчиков мочевины, снижению уровня мочевины в плазме и росту уровня мочевины в просвете кишечника. Все это согласуется с идеей, согласно которой уреолитические бактерии помогают хозяевам рекуперировать азот. Вероятно, столкнувшись с нехваткой симбионтов, грызуны начинают активнее снабжать немногих оставшихся мочевиной, чтобы получать достаточное количество аммиака. Авторы предполагают, что в нормальных условиях аммиак в просвете кишечника ингибирует синтез белков-переносчиков мочевины, так что падение его концентрации во время спячки или из-за дефицита уреолитических бактерий запускает дополнительное производство таких белков.
Чтобы оценить активность уреолитических бактерий, Кэри и ее коллеги проанализировали состав стабильных изотопов в дыхании сусликов после инъекции 13C, 15N-мочевины. У млекопитающих отсутствуют ферменты уреазы необходимые для гидролиза мочевины. Таким образом, если введенная в организм суслика мочевина разлагается на аммиак и углекислый газ, это работа симбиотических бактерий. Как и ожидали авторы, соотношение 13C к 12C в дыхании подопытных особей с нетронутым микробиомом увеличилось, что свидетельствует о расщеплении введенной мочевины в их организме. При этом у сусликов, обработанных антибиотиками и лишенных значительной части симбионтов, соотношение 13C:12C осталось прежним. Хотя летом расщепление мочевины шло активнее из-за более высокой численности бактерий, оно продолжалось на протяжении всей зимы.
Метагеномный анализ показал, что в кишечном микробиоме находящихся в спячке сусликов сильнее представлены семь генов, связанных с выработкой фермента уреазы. Вероятно, во время зимней спячки среди симбионтов возрастает доля тех, что способны расщеплять мочевину. Действительно, численность уреолитических бактерий из рода Alistipes в организме сусликов с лета до конца зимы возрастает примерно в шесть раз.
Воспользовавшись спектроскопией ядерного магнитного резонанса, авторы проанализировали химический состав содержимого слепой кишки и метаболитов печени сусликов, которым ввели 13C, 15N-мочевину. Оказалось, что в организме особей с нетронутым микробиомом концентрация 15N выше, чем у их сородичей, подвергшихся обработке антибиотиками. Аналогичная картина была отмечена для отдельных соединений, включая аммиак, глутамин и аланин. Содержание метаболитов с 15N также зависело от сезона. В слепой кишке их было больше летом, чем зимой. Напротив, в печени максимальное количество метаболитов с содержанием 15N было отмечено в конце зимы. Содержание 15N в белках мышечной ткани также зависело от наличия симбиотических микроорганизмов (но лишь в тех случаях, когда между инъекцией мочевины и взятием образца тканей прошло достаточно времени).
Интересно, что 15N активнее всего включался в мышечные белки в конце зимы, когда бактерии наименее интенсивно расщепляли мочевину. Вероятно, это связано с тем, что в данный период года белков-переносчиков на поверхности кишечника особенно много и они поставляют в его просвет достаточно мочевины. Доля уреолитических симбионтов в микробиоме при этом наиболее высока. В результате даже малой активности бактерий достаточно, чтобы произвести аммиак в необходимых объемах. Кроме того, зимой симбионты чаще гибнут, обеспечивая организм хозяина дополнительными метоболитами с содержанием азота.
Кэри с соавторами полагают, что аммиак, произведенный симбиотическими бактериями на основе сэкономленной мочевины, поглощается поверхностью кишечника, после чего направляется в печень. Здесь он преобразуется в глутамин при участии фермента глутаминсинтетазы, который сохраняет высокую активность на протяжении всей зимы. Обычно аммиак в печени преобразуется в мочевину, однако во время спячки метаболические процессы сдвигаются в сторону производства глутамина. Таким образом, чтобы повторно использовать мочевину и защититься от дефицита азота, суслики используют не только помощь симбиотических бактерий, но и перестраивают собственный метаболизм.
Возможность избежать дефицита азота и разрушения мышечной ткани — не единственное преимущество повторного использования мочевины. Для выведения данного вещества с мочой нужно потратить воду — однако ее следует экономить, поскольку во время спячки суслики не пьют. Расщепление мочевины на аммиак и углекислый газ силами симбиотических бактерий позволяет расходовать воду намного более экономно.
Ранее мы рассказывали о том, как биологи сравнили геномы четырех видов зверей из разных отрядов, впадающих в спячку (включая тринадцатиполосных сусликов), и нашли у них общие участки, которые эволюционируют быстрее среднего. Большинство из них имеют регуляторные функции и расположены рядом с генами, которые отвечают за развитие ожирения у людей.
Сергей Коленов
Также по соотношению изотопов в панцирях можно отследить производство и переработку ядерного топлива
Панцири черепах хранят информацию о ядерных испытаниях и работах с ядерным топливом. К такому выводу пришли ученые, проанализировав соотношение 235U/238U и 236U/238U в кератине из щитков панциря зеленой черепахи с тихоокеанского атолла и двух сухопутных и двух пресноводных черепах из США. Оказалось, что у тех черепах, что жили рядом с местами испытания ядерного оружия, соотношение 235U/238U повышено, а у тех, что обитали недалеко от заводов по производству ядерного топлива, наоборот, понижено. При этом соотношение 236U/238U было повышено в обоих этих случаях. Как отмечается в статье для журнала PNAS Nexus, открытие поможет исследователям реконструировать историю загрязнения экосистем радиоактивными веществами. В 1940-1990 годах во многих регионах мира проводились испытания ядерного оружия (сейчас эту практику продолжает только КНДР). Как правило, их устраивали в отдаленной и малонаселенной местности. Например, советские военные обычно использовали для ядерных тестов полигоны в степях и арктической тундре, а их американские и французские коллеги предпочитали пустыни или тихоокеанские атоллы. Однако даже при таких условиях испытания ядерного оружия оказали серьезное негативное воздействие на людей и окружающую среду. Его масштаб до сих пор остается предметом исследований. Команда специалистов под руководством Сайлера Конрада (Cyler Conrad) из Тихоокеанской северо-западной национальной лаборатории решила поискать свидетельства ядерных испытаний прошлого в телах черепах. Дело в том, что ареалы некоторых их видов пересекаются с местами проведения ядерных тестов. Таким образом, черепахи вполне могли оказаться в зоне радиоактивного загрязнения и накопить в тканях радиоактивные изотопы. Ранее ученые уже находили в костях этих рептилий значительные концентрации изотопов 137Cs и 90Sr, которые попадают в окружающую среду во время ядерных взрывов и аварий на атомных электростанциях. А Конрад с соавторами сосредоточили внимание на изотопных сигнатурах урана в роговых щитках черепашьих панцирей. Исследователи нашли в музейных коллекциях пять черепашьих щитков, которые были добыты в разных районах ядерных испытаний, а также в местах добычи урана и работ с ядерным топливом. Первым из них стал щиток зеленой черепахи (Chelonia mydas), который был найден в желудке тигровой акулы (Galeocerdo cuvier), пойманной у тихоокеанского атолла Эниветок в 1978 году. На момент гибели от зубов акулы этой особи было 10-20 лет, а ядерные испытания в данном районе закончились в 1958 году, так что, скорее всего, непосредственно она их не застала. Второй щиток принадлежал пустынному западному гоферу (Gopherus agassizii). Он был собран в 1959 на юго-западе Юты, примерно в 240 километрах от бывшего Невадского испытательного полигона, где в 1951-1962 годах тестировали ядерное оружие. Третий щиток, который авторы взяли для исследования, был собран у сонорского гофера (G. morafkai) в 1999 году на юго-западе Аризоны. В этой местности ядерные испытания не проводились, так что данный образец использовался в качестве контроля. Четвертый щиток принадлежал иероглифовой чепепахе (Pseudemys concinna). Его добыли в 1985 году на ядерном могильнике «Саванна-ривер» в Южной Каролине, где с 1950 до конца 1980 годов добывали уран, а также изготавливали и перерабатывали ядерное топливо. Наконец, пятый щиток был взят в 1962 году у восточной коробчатой черепахи (Terrapene carolina carolina) в резервации Ок-Ридж в штате Теннесси. В этом месте с 1940 года добывали уран и изготавливали ядерное топливо. Из всех пяти щитков Конрад с соавторами взяли небольшое количество кератина и оценили соотношение содержащихся в нем изотопов урана 235U/238U и 236U/238U. Лишь в щитке сонорского гофера соотношение 235U/238U оказалось неотличимым от естественного. В образцах из Южной Каролины и Теннесси оно было ниже нормы, а в образцах из Юты и с атолла Эниветок — выше нормы. У сонорского гофера не было выявлено следов изотопа 236U, что соответствует естественному состоянию (поскольку природных источников этого изотопа не существует). Зато у черепах из Южной Каролины, Теннесси и с атолла Эниветок было выявлено значительное количество изотопа 236U, так что соотношение 236U/238U значительно превышало норму. У образца из Юты соотношение 236U/238U было немного выше нормы. По мнению авторов, зеленая черепаха с атолла Эниветок подверглась радиоактивному загрязнению за год до гибели, когда на острове проводились работы по строительству саркофага. Вероятно, во время работ 235U и 236U попали в воду и песок, а оттуда — в тело рептилии, например, с водорослями, которые она поедала. Пустынный западный гофер из Юты жил достаточно далеко от места испытаний, однако, вероятно, попал под радиоактивные осадки. А сонорскому гоферу из Аризоны и вовсе удалось избежать столкновения последствиями ядерных испытаний. Что касается черепах из Южной Каролины и Теннесси, то они подверглись воздействию обедненного урана, который оказался в окружающей среде при производстве ядерного топлива. Интересно, что на щитке восточной коробчатой черепахи из Теннесси сохранилось семь слоев, соответствующих семи годам ее жизни, с 1955 по 1962 годы. Минимальное соотношение 235U/238U было выявлено в слое, который сформировался, пока рептилия еще накопилась в яйце. Таким образом, она, вероятно, получила радиоактивные изотопы от матери. Результаты исследования подтверждают, что черепахи способны накапливать антропогенные радиоактивные изотопы из окружающей среды в своих панцирях. При этом оценить соотношение разных изотопов урана можно даже по очень скромному количеству кератина. Авторы надеются. что данные, полученные из черепашьих панцирей, позволят точнее реконструировать историю загрязнения экосистем радиоактивными отходами. Из-за ядерных испытаний концентрация углерода-14 в атмосфере и тканях живых организмов в середине прошлого века резко выросла, а затем постепенно снижалась. Оценивая долю этого изотопа в контрабандных бивнях слонов, можно понять, когда они были убиты. Применив этот подход к партии слоновой кости, изъятой в Уганде в 2019 году, исследователи выяснили, что она была добыта в 1980 годах. С тех пор она хранилась в государственном хранилище Бурунди, откуда ее затем украли.