Физики впервые продемонстрировали эффект сверхпоглощения света с помощью большого числа молекул органического полупроводника. Изучая динамику их поглощения методом абсорбционной спектроскопии в режиме накачки-зондирования с фемтосекундным разрешением, авторы показали, что образцы можно считать прототипом квантовой батареи. Исследование опубликовано в Science Advances.
В начале XX века Альберт Эйнштейн, развивая идеи о том, что свет распространяется порциями (квантами), построил полуклассическую теорию резонансного взаимодействия излучения с двухуровневой системой. Он описал три основных процесса: спонтанное излучение, поглощение и вынужденное излучение. Последнее происходит тогда, когда на возбужденный атом налетает фотон и образуется два идентичных световых кванта. Такое умножение света сыграло ключевую роль в изобретении лазера.
Вместе с тем в середине века Дикке теоретически показал, что спонтанное излучение N излучателей может происходить в коллективном режиме за счет конструктивной квантовой интерференции. Интересным было то, что время излучения при этом сокращается в 1/N раз, а пиковая интенсивность увеличивается в N2 раз. Этот эффект, названный сверхизлучением, был впоследствии обнаружен на множестве систем и активно изучается до сих пор. Недавно, например, физики выяснили, что оптоволокно способно поддерживать сверхизлучение двух атомов, разнесенных на расстояние трети миллиметра.
Испускание и поглощение фотонов — это процессы одной природы. Квантовая механика, в свою очередь, обладает симметрией относительно инверсии времени. Это значит, что системы с повышенной скоростью излучения также должны иметь повышенную скорость поглощения. Другими словами, законы физики разрешают эффект сверхпоглощения, который будет обладать теми же характеристиками, что и сверхизлучение. Это значит, что чем больше частиц-поглотителей, тем быстрее система забирает от поля энергию. Эта концепция звучит контринтуитивно, если сравнивать такой процесс с зарядкой обычных батарей, при которой время зарядки растет с их емкостью. Квантовые же батареи могли бы быть полезны для быстрой зарядки электрического транспорта или в системах с взрывным характером подачи энергии, однако пока физики смогли наблюдать сверхпоглощение лишь на небольшом числе атомов.
Группа исследователей из Австралии, Великобритании и Италии под руководством Джеймса Кваша (James Quach) из Аделаидского университета сделала следующий шаг в этом направлении. Они изучали динамику поглощения света молекулами органического полупроводника с различными концентрациями и показали, что оно действительно масштабируется согласно законам сверхпоглощения.
Изготовленные авторами структуры состояли из тонкого слоя маломассивного молекулярного полупроводника Lumogen-F orange, диспергированного в полистирольной матрице в различных концентрациях. Полное количество поглощающих молекул N варьировалось от 1,6×109 до 1,6×1011. Физики располагали эти слои между двумя брэгговскими зеркалами, образующими микрорезонатор.
Они подвергали каждую структуру абсорбционной спектроскопии в режиме накачки-зондирования с фемтосекундным разрешением. Для этого авторы управляли временем задержки между мощным широкополосным импульсом видимого диапазона, возбуждавшего в молекулах электронный переход, и таким же, но менее интенсивным зондирующим импульсом, который давал информацию о пропускаемости образца после накачки. Они меняли интенсивность накачки таким образом, чтобы число фотонов на одну молекулу оставалось постоянным для разных образцов.
Для связи измеряемого сигнала с энергией физикам пришло построить теоретическую модель, которая описывает динамику процесса поглощения. Она опиралась на уравнение Линдблада, описывающее N двухуровневых поглощателей, размещенных в резонаторе с потерями и испытывающих также продольную и поперечную релаксации. Это позволило с помощью подгонки параметров построить зависимость поглощенной энергии от времени в пересчете на одну молекулу. Физики извлекли для каждой конфигурации время и пиковую скорость поглощения (зарядки) и пиковое значение запасенной энергии. Время зарядки уменьшалось, а пиковые значения увеличивались с ростом N, что напрямую свидетельствовало о сверхпоглощении.
Моделирование также помогло выявить роль декогеренции в этом процессе. Дело в том, что сверхпоглощающий материал также должен и сверхизлучать, что и наблюдается в большинстве случаев. Однако авторы так подобрали материалы и параметры образцов, что сразу после поглощения молекулы релаксируют на «темные» состояния, в которых они могут существовать без излучения долгое время и таким образом хранить энергию. Рассуждая о том, как интегрировать такие батареи в привычные устройства, авторы предложили добавлять в структуру дополнительные слои, которые будут способствовать разнесению электрона и дырки и созданию таким способом электрического тока.
Сверхпоглощение — это не единственный механизм работы квантовых батарей. Мы уже рассказывали про то, как для этого можно использовать квантовую запутанность и эффект Парселла.
Марат Хамадеев
При этом без обычного звездного коллапса
Канадские физики показали, что аксионоподобная ультралегкая темная материя способна генерировать мощное ультрафиолетовое излучение для быстрого формирования сверхмассивных черных дыр. При этом такое образование может происходить напрямую из холодного газа, без обычной фазы звездообразования. Статья с описанием работы размещена в репозитории arXiv.org.