Ученые создали плазмиду с высокой скоростью конъюгации, которая за два часа передается к 96 процентам целевых бактерий и приводит к гибели патогенных штаммов в кишечнике мыши. В нее встроен комплекс CRISPR/Cas9, который распознает целевой ген и разрезает хромосому клетки. Новая плазмида передается в два раза быстрее дикого типа, который использовали ранее. Исследование опубликовано в Molecular Systems Biology.
Многие энтеробактерии, например Escherichia coli, Klebsiella pneumoniae, Shigella sp. и Salmonella sp., могут быстро накапливать гены устойчивости к антибиотикам. Поскольку некоторые из них вызывают смертельные инфекции, ученые ищут альтернативные способы лечения, не включающие антибиотики. Один из таких способов — транспортировка системы CRISPR/Cas9 в целевую клетку для разрезания двухцепочечной ДНК, что приводит к гибели бактерии. Для доставки этой системы используют бактериофагов или клетки других бактерий. Бактериофаги действительно быстро и точно доставляют CRISPR/Cas9, но их селективность снижает быстрая мутация рецепторов фагов на поверхности клеток, а условия окружающей среды в кишечнике (в частности, кислотность и активность ферментов) ухудшают их эффективность. Адаптированные к кишечнику бактерии являются более устойчивыми и используют бактериальную конъюгацию для доставки CRISPR/Cas9 к клеткам-мишеням, но предыдущие эксперименты показывали низкую эффективность передачи плазмиды в кишечнике мышей.
Чтобы решить эту проблему, канадские ученые из Университета Шербрука под руководством Кевина Нила (Kevin Neil) разработали штамм кишечной палочки с более высокой эффективностью бактериальной конъюгации. Он содержит плазмиду TP114 с системой CRISPR/Cas9, нацеленной на ген cat, благодаря которой эффективен при лечении мышей от устойчивых к антибиотикам штаммов E. coli и Citrobacter rodentium. В предыдущем исследовании скрининг большинства использующихся плазмид показал, что TP114 наиболее эффективно передается соседним бактериям в микробиоте кишечника.
Для начала исследователи создали три штамма кишечной палочки: KN01, KN02, KN03. Все они устойчивы к стрептомицину, но у каждого есть индивидуальная резистентность к спектиномицину, хлорамфениколу и тетрациклину соответственно. Различия в устойчивости позволяли в процессе экспериментов фенотипировать этих бактерий. KN01 стали транспортерами плазмиды, KN02 — целевым штаммом, несущим этот ген, а KN03 — нецелевым штаммом (контролем).
Чтобы оценить эффективность конъюгации, все три штамма вводили в кишечник самок мышей (линия C57BL, в каждой группе по шесть особей). Через 36 часов после введения бактерий — доноров плазмиды количество целевого штамма в среднем снижалось на 98,6 процентов, подобные результаты были получены и при введении штамма — донора за 12 часов до целевого. А риботипирование всех микроорганизмов указало, что после обработки штаммом KN01, численность десяти высококонсервативных бактериальных групп не изменилась.
Для создания более эффективных вариантов плазмиды TP114 исследователи использовали ускоренную лабораторную эволюцию, а полученный мутант оказался в два раза эффективнее дикого типа. Эту же плазмиду авторы работы попробовали передать не кишечной палочке, а Citrobacter rodentium. Через два дня количество патогенных бактерий снизилось на 96 процентов.
Таким образом исследователи показали, что конъюгация бактерий — это очень точный способ передачи плазмиды: например, у сконструированной плазмиды скорость конъюгации увеличилась на три порядка по сравнению с диким типом. А высокая эффективность уничтожения целевого штамма в кишечнике мыши (до 96 процентов) указывает, что среда кишечника мало влияет на конъюгацию. Более того введенные бактерии никак не повлияли на микробиоту кишечника, уничтожая только целевой патоген. Авторы считают, что нацеливание системы на гены резистентности к антибиотикам могут быть не лучшим вариантом выбора целевого гена, так как они не всегда находятся в хромосомной ДНК. В будущем ученые предлагают использовать консервативные гены, например, рибосомных белков, для увеличения вероятности гибели целевых клеток.
Систему CRISPR/Cas9 уже давно пытаются использовать для лечения различных заболеваний: врождённых форм слепоты, болезни Альцгеймера у мышей. Также ученые модифицировали клетки Т-лимфоцитов для лечения рака.
Анастасия Сверкунова
Проект получил название Unknome
Британские исследователи представили пополняемую и редактируемую пользователями базу данных белков, в которой они ранжируются по степени того, насколько мало о них известно. Проект призван обратить внимание на подобные белки и ускорить процесс их изучения. Публикация об этом появилась в журнале PLoS Biology. Как известно со времени прочтения человеческого генома, в нем закодировано примерно 20 тысяч белков. Применение протеомного и транскриптомного подхода в прошедшие после этого два десятилетия подтвердило, что большинство из них экспрессируются, и позволило выяснить назначение многих из них. Тем не менее, многие белки до сих пор остаются не охарактеризованными несмотря на то, что значительная их часть эволюционно консервативна и может выполнять критически важные функции. Во многом это связано с тем, что исследователи склонны фокусироваться на уже изученных белках, поскольку такие работы дают более предсказуемый результат. Чтобы систематизировать подход к идентификации и характеризации неизвестных белков, сотрудники Лаборатории молекулярной биологии британского Совета по медицинским исследованиям, Кембриджского и Оксфордского университетов под руководством Мэтью Фримена (Matthew Freeman) и Шона Манро (Sean Munro) создали и выложили в открытый доступ базу данных Unknome (буквально «незном», сокращенное от unknown genome — «неизвестный геном»). Она содержит ортологичные по базе PANTHER и собранные в кластеры последовательности белков человека и популярных модельных животных (таких, например, как кишечная палочка, дрозофила и мышь), взятые из базы UniProt. Им присваивается численная оценка «известности» (knownness) на основании аннотаций в проекте Gene Ontology (GO). Пользователи могут присваивать им свою оценку, исходя из имеющейся информации. Авторы работы оценили пригодность Unknome как основания для экспериментальной работы, выбрав с его помощью набор из 260 белков дрозофилы с неизвестными функциями (показатель известности 1,0 и менее), сохранившихся у людей. Нокдаун некоторых из этих генов с помощью РНК-интерференции приводил к утрате жизнеспособности. Функциональный скрининг остальных указал на участие некоторых в фертильности, развитии организма, передвижении, контроле качества синтезированных белков и устойчивости к стрессу. Выборочное выключение генов с использованием CRISPR/Cas9 определило два гена, отвечающих за мужскую фертильность, и компонент сигнального пути Notch, принимающего участив нейрогенезе, онкогенезе и связанного с различными неврологическими заболеваниями и пороками развития. Исследователи заключают, что тщательная оценка недостаточности знаний о функции гена и кодируемого им белка предоставляет ценный ресурс для поиска направлений биологических исследований и, возможно, стратегий их эффективного финансирования. Иногда на точность генетических баз данных могут влиять весьма неожиданные факторы. В материале «Наследили тут» можно почитать о том, как данные в одной из таких баз оказались испорчены неизвестными паразитами.