Физики-теоретики показали, что сильные магнитные поля в гиперновых и сверхмощных сверхновых вносят значительный вклад в образование аксионоподобных частиц в ходе когерентной конверсии плазмонов. Добавив магнитное поле в модель взрыва сверхновой, ученые выяснили, что скорость рождения аксионоподобных частиц массой от 4 до 14 мегаэлектронвольт более чем на порядок превышает предсказанную ранее. Более того, образовавшиеся в результате распада таких частиц фотоны будут прилетать в детекторы со значительной задержкой, что позволит сделать выводы о магнитных свойствах сверхновой и уточнить массу аксиона, пишут ученые в Physical Review Letters.
Изначально аксионы — слабовзаимодействующие с материей псевдоскалярные бозоны — были введены для устранения проблемы сохранения СР-инвариантности в квантовой хромодинамике, но последние годы стали особенно популярны у астрофизиков как кандидаты в темную материю. Помимо аксионов ученые изучают и аксионоподобные частицы, которые отличаются от аксионов тем, что не могут взаимодействовать с глюонами. Несмотря на долгие поиски, ни аксионы, ни аксионоподобные частицы, до сих пор не были найдены, а предполагаемые значения массы последних варьируются от 10−10 электронвольт до сотен мегаэлектронвольт.
Сверхновые, образованные в результате коллапса ядра звезды считаются мощными источниками аксионоподобных частиц. Предполагается, что в этом случае частицы рождаются в результате эффекта Примакова из двух фотонов в электростатическом поле протонов. Их дальнейшая судьба зависит от массы: в случае, если масса невелика, частицы, скорее всего, покинут сверхновую и распадутся на фотоны гамма-диапазона под действием галактических магнитных полей, а в случае больших масс распадутся на фотоны внутри ядра без участия магнитного поля. Затем дочерние фотоны уже можно поймать наземными и космическими детекторами и по этим данным оценить свойства аксионов. К примеру, анализ излучения от сверхновой SN1987A помог установить ограничения на массу аксионоподобных частиц и константу взаимодействия аксиона с фотонами.
Однако в высокоэнергетических сверхновых, таких как гиперновые и сверхмощные сверхновые, условия для возникновения аксионоподобных частиц могут оказаться совершенно иными. Дело в том, что сверхновые этих типов считают источниками галактических позитронов и тяжелых элементов, рожденных в ходе r-процесса, а для этого требуется подпитка взрыва, как вариант, сильным магнитным полем. Хотя последнее и не имеет экспериментальных доказательств, теоретическое исследование показало, что величина магнитного поля в сверхновых может достигать триллиона килогауссов. Под действием таких полей аксионоподобные частицы могут рождаться при когерентной конверсии плазмонов — возмущений электромагнитного поля в плазме, где под когерентным подразумевается случай совпадения дисперсионных соотношений плазмонов и аксионоподобных частиц. В прошлом году ученые даже доказали, что на Солнце образование аксионов под действием магнитного поля может доминировать над эффектом Примакова. Для гиперновых и сверхмощных сверхновых, однако до недавнего времени подобного исследования не проводили.
Физики из пяти стран под руководством Алессандро Мирицци (Alessandro Mirizzi) из Национального института ядерной физики Италии решили исправить это и смоделировали магниторотационный взрыв звезды массой 20 солнц, добавив в модель сверхновой вращение и дипольное магнитное поле в триллион гауссов, которое в момент взрыва вырастет на 3 порядка.
На 370 милисекунде после взрыва, когда ударная волна распространилась на 4000 километров от центра звезды, ученые измерили зависимости магнитного поля, температуры, плазменной частоты (играет роль эффективной массы фотона) и масштаба экранирования, равного обратной длине Дебая (отвечает за корреляции между заряженными частицами в плазме), от расстояния до центра сверхновой. Используя эти зависимости, авторы посчитали скорости образования аксионоподобных частиц в результате процесса Примакова и под действием магнитного поля, а затем, интегрируя эти величины по всему фотонному спектру и объему сверхновой, получили соответствующие значения аксионной светимости сверхновой.
Оказалось, что в случае, если масса аксионоподобных частиц заключается между 4 и 14 мегаэлектронвольтами, светимость когерентно рожденных частиц превышает светимость рожденных в процессе Примакова, а при массе в 10 мегаэлектронвольт достигает своего пика в gaγ2×1071 обратных эргов, где gaγ — константа взаимодействия аксиона с фотонами (принимается равной 10-11 обратных гигаэлектронвольт). При больших и меньших массах аксионоподобные частицы под действием магнитного поля возникают лишь в незначительных количествах.
Распад аксионоподобных частиц на пары фотонов создает большой поток гамма-излучения, который можно наблюдать с помощью уже существующих детекторов. Такой поток должен отличаться задержкой во времени относительно первых свидетелей коллапса ядра звезды — нейтрино, поскольку сумма расстояний, пройденных сначала аксионоподобной частицей, а затем дочерними фотонами будет больше расстояния от сверхновой до Земли.
Для количественной оценки физики приняли массу аксионоподобных частиц равной 5 мегаэлектронвольт и посчитали зависимость среднего числа дочерних фотонов, которые попадали бы на детектор космического гамма-телескопа Ферми за единицу времени, от времени задержки. Как и ожидалось, из-за того, что аксионоподобные частицы, образованные под воздействием магнитного поля обладают меньшей энергией, чем образованные в результате эффекта Примакова, они должны прилететь к детектору с большей задержкой, чем последние. В связи с этим, первые несколько дней поток фотонов будет слабо зависеть от магнитного поля сверхновой, и по нему можно будет уточнить константу связи аксиона с фотоном. Затем, приблизительно на пятый день, когда поток «примаковских» фотонов пойдет на спад, а поток «магнитных» фотонов возрастет, можно будет делать выводы как об интенсивности магнитного поля сверхновой, так и о массе аксионоподобных частиц. По данным моделирования, дочерние фотоны можно наблюдать в течение двух недель после взрыва звезды.
Авторы подчеркивают, что хотя их исследование относится к очень редкому классу событий (гиперновые и сверхмощные сверхновые в среднестатистической галактике взрываются примерно раз в 100 миллионов лет), его наблюдение может не только пролить свет на магнитные свойства гиперновых, но и доказать существование аксионоподобных частиц и уточнить их массу.
Ранее мы рассказывали о том, как ученые обнаружили самую далекую гиперновую, которая породила быстровращающийся магнитар, а также как была установлена четкая связь между длинным гамма-всплеском и взрывом сверхновой.
Елизавета Чистякова
В магнитном поле образец поглощал и излучал разную энергию
Тело может излучить больше энергии, чем поглотить. Это противоречит закону излучения, однако именно такой результат получили американские физики. Теперь, по словам ученых, можно будет создать устройства, которые более эффективно используют солнечную энергию