Лауреатами Нобелевской премии по физике 2021 года стали Сюкуро Манабе (Syukuro Manabe) и Клаус Хассельман (Klaus Hasselmann) за физическое моделирование климата Земли, а также Джорджо Паризи (Giorgio Parisi) — за открытие взаимодействия между беспорядком и флуктуациями в физических системах. За церемонией объявления победителей можно следить в прямом эфире на сайте Нобелевского комитета. Подробнее об исследованиях ученых и их заслугах можно прочитать в официальном пресс-релизе.
BREAKING NEWS:
The Royal Swedish Academy of Sciences has decided to award the 2021 #NobelPrize in Physics to Syukuro Manabe, Klaus Hasselmann and Giorgio Parisi “for groundbreaking contributions to our understanding of complex physical systems.” pic.twitter.com/At6ZeLmwa5
Вручение премий состоится 10 декабря. Традиционно награждение проводилось на официальной церемонии в Стокгольме в декабре, но из-за пандемии в этом году, как и в прошлом, ее проведут в онлайн-формате.
Первую половину премии поделят между собой Сюкуро Манабе и Клаус Хассельман — «за физическое моделирование климата Земли, количественное описание климатических изменений и предсказание глобального потепления». Манабе был первым ученым, который связал баланс нисходящего и восходящего излучения в атмосфере с вертикальным переносом воздушных масс и показал, почему увеличение концентрации углекислого газа в атмосфере может привести к росту ее температуры. Именно эти работы 1960-х годов легли в основу современных климатических моделей.
Хассельман построил физические модели, которые связывают погоду и климат. А также разработал метрики, по которым можно определить влияние естественных и антропогенных факторов (в частности, изменение концентрации углекислого газа) на изменения глобального климата.
Вторая половина премии достанется Джорджо Паризи — «за открытие взаимодействия между беспорядком и флуктуациями в физических системах — от атомных до планетарных масштабов». Нобелевский комитет отметил его работы, где физик исследовал закономерности, которые можно найти в неупорядоченных материалах. Закономерности, открытые Паризи, подходят не только для описания сложных материалов с неупорядоченной структурой, но и для других сложных систем — не только физических, но также связанных с математикой, биологией или машинным обучением.
В этом году впервые сбылся прогноз компании Clarivate Analytics, основанный на показателях цитируемости, которая назвала Паризи одним из трех наиболее вероятных кандидатов на премию по физике. Двумя другими фаворитами прогнозисты считали Алексея Китаева — за теоретические работы, связанные с квантовыми вычислениями с топологической защитой, и Марка Ньюмана — за моделирование сложных сетей, которые описывают разнообразные естественные системы, от лесных пожаров до научных коллабораций. До этого у Clarivate Analytics уже были успешные прогнозы, но сбывались они не в тот же год.
Два предыдущих года Нобелевскую премию присуждали за работы, так или иначе связанные с космосом. Прошлогоднюю премию получили ученые, которые занимались исследованием черных дыр. Первая половина премии досталась Роджеру Пенроузу, который показал, что образование черных дыр — это строгое следствие общей теории относительности. Вторую половину премии поделили Райнхард Генцель и Андреа Гэз — они открыли сверхмассивный компактный объект в центре Млечного Пути. Про работы лауреатов 2020 года вы можете прочитать в материале «И все-таки они существуют».
В 2019 году Нобелевскими лауреатами стали Джеймс Пиблс — за теоретические открытия в области космологии, а также Мишель Майор и Дидье Кело — за открытие экзопланеты на орбите вокруг солнцеподобной звезды. Подробнее про открытия, которые «позволили по-новому взглянуть на место человека во Вселенной», — в нашем материале «Место во Вселенной».
Александр Дубов
Для этого физики косо сталкивали восемь плазменных струй
Британские и американские физики создали лабораторный аналог аккреционного диска, который возникает в космосе при падении газа на массивные объекты, например, черные дыры. В новом опыте, в отличие от предыдущих исследований, отсутствовали какие-либо стенки или ограничения для потоков — их закручивание происходило за счет нецентрального столкновения восьми плазменных струй. Плазменное кольцо продемонстрировало стабильность, что позволит в будущем исследовать роль магнитного поля в аккреции вещества. Исследование опубликовано в Physical Review Letters. Аккреционные потоки газа вокруг массивных тел встречаются во Вселенной довольно часто. Свет, испускаемый аккреционным диском, может свидетельствовать в том числе и о существовании черной дыры. Поведение газа, падающего на черную дыру, вызывает у исследователей множество вопросов, ответы на которые они добывают преимущественно теоретически. Лабораторные попытки понять физику аккреционного диска тоже существуют. Для этого физики создают потоки водно-глицериновых растворов или металлических расплавов в магнитном поле. Другой способ основан на подаче электрического тока на края холловской плазмы, удерживаемой постоянными магнитами. Недостатком всех этих методов остается наличие жестких границ, которые отсутствуют в космических процессах и искажают моделирование. Группа физиков под руководством Сергея Лебедева (Sergei Lebedev) из Имперского колледжа Лондона вместе с коллегами из США провели эксперимент, лишенный этого недостатка. Он заключался в косом сталкивании восьми плазменных струй, которые закручивались в кольцо. Их движение при этом напоминало движение вещества в аккреционном диске массивного тела. В эксперименте также образовывались характерные плазменные струи, перпендикулярные плоскости вращения. Установка физиков состояла из алюминиевых проволок толщиной 40 микрометров, расположенных в серединах ребер правильного восьмиугольника. Ученые пропускали через них импульсы большого тока (до 1,4 мегаампера на пике), что приводило к нагреву и абляции вещества. Магнитные поля формировали абляционные потоки и направляли их в середину установки, слегка отклоняя от центра. Столкновение потоков вещества формировало его в кольцо диаметром шесть миллиметров. Оно существовало не более 210 наносекунд, за время которого плазма делала от половины до двух оборотов. Физики следили за ее образованием и развитием в оптическом и экстремально-ультрафиолетовом диапазоне, что позволило исследовать распределение скоростей. Изображения показали, что плазменное кольцо стабильно в течение срока жизни, а само вращение происходит в квазикеплеровском режиме. Авторы также наблюдали плазменную струю, порожденную из вращающегося плазменного столба осевыми градиентами теплового и магнитного давления. Скорость вещества в ней составила 100±20 километров в секунду. Малый угол расходимости — 3±1 градус — свидетельствовал об отсутствии эффектов нестабильности. Струю также окружал плазменный ореол. В будущем авторы планируют продлить время жизни кольца за счет более долгих абляционных импульсов, для чего им потребуется использовать более толстые проволоки. Они убеждены, что замена алюминия на другие материалы позволит контролировать различные параметры магнитнодинамического потока. В будущем это позволит в лаборатории приблизиться к условиям, возникающим в астрофизических процессах, и понять роль нестабильности магнитных полей в аккреции вещества. Аккреционный диск — это не единственное явление, связанное с черными дырами, которое физики пытаются воспроизвести в лабораторных экспериментах. Ранее мы рассказывали, как течение воды в сливе раковины помогает изучать квазисвязанные состояния черных дыр, и как в конденсате Бозе — Эйнштейна подтвердили тепловой спектр излучения Хокинга.