Американские инженеры показали, что сигналы интернет-спутников Starlink можно использовать для геолокации с помощью любительского радиооборудования. Записав сигналы шести пролетающих спутников, они рассчитали местоположение в пространстве с ошибкой в 33,5 метра, а при использовании высотомера и позиционировании на плоскости ошибка уменьшилась до 7,7 метра. Статья опубликована в IEEE Transactions on Aerospace and Electronic Systems, а также доступна на сайте Калифорнийского университета в Ирвайне.
GPS, ГЛОНАСС и другие глобальные спутниковые навигационные системы работают следующим образом. Находясь на орбите, спутники транслируют сигнал, содержащий в себе данные о времени его испускания. Получив этот сигнал, приемник может сравнить его с собственным временем и по скорости распространения радиоволн рассчитать расстояние до спутника. А получив сигналы от хотя бы четырех спутников, он может рассчитать свое местоположение. Спутники GPS и ГЛОНАСС находятся на высоте 19-20 тысяч километров, поэтому сигнал доходит с не очень высокой мощностью и исследователи уже довольно давно изучают возможность использования низкоорбитальных аппаратов, расположенных намного ближе к Земле.
В последние годы толчок этому направлению дали новые большие группировки интернет-спутников, такие как Starlink, OneWeb и несколько планируемых, в том числе Kuiper от Amazon. Потенциально близкое расположение к поверхности Земли и мощный принимаемый сигнал могут повысить качество спутниковой навигации, но фактически существующие системы не «заточены» под такое использование, поэтому классический метод с приемом сигналов о времени с ними не работает. Ранее исследователи предлагали альтернативные методы, для которых необязательно знать содержимое сигналов, но к Starlink их пока не применяли.
Исследователи под руководством Захера Кассаса (Zaher Kassas) из Калифорнийского университета в Ирвайне научились рассчитывать местоположение по сигналам Starlink, не имея информации о его содержимом. Они обнаружили, что в сигнале спутников на частоте 11,325 гигагерц есть девять несущих пиков сигнала. Авторы решили рассчитывать местоположение с помощью отслеживания фазы несущей, метода, используемого для повышения точности GPS-измерений до десятков сантиметров. Они дополнили его адаптивным фильтром Калмана для подстройки частоты из-за допплеровского смещения сигнала от спутников.
Инженеры использовали для экспериментов программно определяемую радиосистему (SDR) и доступную антенну для Ku-диапазона. Положения спутников они узнали по общедоступной базе TLE-данных. Система записывала сигналы в течение 800 секунд. После записи они рассчитали координаты с ошибкой в 33,5 метра, если рассматривать трехмерное местоположение и 25,9, если рассчитывать положение в плоскости. Добавив данные с высотомера, убирающие неопределенность по высоте, они добились ошибки в 7,7 метра.
Авторы рассказали Ars Technica, что записывали сигналы от шести спутников по очереди, потому что пока над их местностью не пролетает такое количество аппаратов одновременно, но по мере роста Starlink их должно стать больше, что повысит точность геолокации. Кроме того, они готовят новый эксперимент, в котором будут ловить сигнал от четырех спутников одновременно и рассчитывать местоположение в реальном времени.
Одна из проблем использования GPS и его аналогов в больших городах заключается в том, что сигнал отражается от зданий, поэтому расчеты происходят с ошибками. В прошлом году Google начала добавлять в Android модели зданий в некоторых городах, чтобы учитывать их при расчете координат.
Григорий Копиев
За два с половиной года прибор выработал 122 грамма молекулярного кислорода
Первая в истории установка по получению кислорода из марсианской атмосферы MOXIE завершила работу. За 2,5 года прибор в ходе 16 включений выработал 122 грамма молекулярного кислорода, сообщается на сайте NASA. MOXIE (Mars Oxygen In-situ Resource Utilization Experiment) установлен на марсоходе «Персеверанс». Это первый проводимый на Марсе эксперимент по получению ресурсов для пилотируемых экспедиций. Прибор всасывает марсианский воздух через HEPA-фильтр, сжимает при помощи спирального насоса и нагревает до 800 градусов Цельсия, после чего направляет в электролизную ячейку с твердым оксидом, где углекислый газ разлагается на ионы кислорода и угарного газа. После этого ионы кислорода направляются к аноду, где превращаются в молекулярный кислород, а смесь остальных газов выбрасывается в атмосферу. Эксперимент начался в апреле 2021 года. В начале сентября команда MOXIE подвела итоги работы прибора. Шестнадцатый по счету и финальный сеанс работы MOXIE состоялся 7 августа 2023 года, в ходе которого было произведено 9,8 грамма кислорода. В общей сложности за 2,5 года работы прибор сгенерировал 122 грамма молекулярного кислорода с чистотой 98 процентов и выше. При этом максимальная производительность составила 12 грамм в час. MOXIE успешно функционировал в разных климатических условиях в течение всего марсианского года. Исследователи также опубликовали аудиозапись работы компрессора MOXIE, полученная микрофоном инструмента SuperCam марсохода «Персеверанс» 27 мая 2021 года. https://soundcloud.com/nasa/moxies-air-compressor-pumping-away-on-mars?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing Теперь ученые намерены масштабировать установку, однако это будет заключаться не в создании более эффективной модели прибора, а более крупного устройства, включающего в себя генератор и ожижитель кислорода, а также его хранилище. Ранее мы рассказывали о том, как марсианский бетон предложили делать на основе крови и мочи астронавтов.