Австрийские исследователи продемонстрировали способ переработки пластика при помощи ферментов, выделяемых микроорганизмами желудка коровы. В работе, опубликованной в журнале Frontiers in Bioengineering and Biotechnology, ученые гидролизовали три полиэфира — полиэтилентерефталат (ПЭТ), полиэтиленфураноат (ПЭФ) и полибутиленадипаттерефталат (ПБАТ), используя жидкость из рубца — отдела четырехкамерного желудка крупного рогатого скота.
На сегодняшний день на территории Европы скопилось 25,8 миллиона тонн пластиковых отходов, из которых примерно 15 процентов составляют полиэфиры, главным образом полиэтилентерефталат — из него изготавливают текстиль, упаковку, бутылки для воды и газированных напитков. К часто применяемым полиэфирам относится также полибутиленадипаттерефталат, представляющий собой сополимер, синтезированный из 1,4-бутандиола, адипиновой и терефталевой кислот. Еще один важный представитель полиэфиров — это полиэтиленфураноат, мономером которого является 2,5-фурандикарбоновая кислота, получаемая из возобновляемых источников.
Перспективным методом переработки пластика сейчас является ферментативный гидролиз при помощи бактерий. Например, в 2016 году японские микробиологи, исследуя почву вблизи завода по производству полиэтилентерефталата, выделили штамм бактерий Ideonella sakaiensis 201-F6, способный гидролизовать ПЭТ. Эти бактерии смогли переработать тонкую (0,2 миллиметра) полимерную пленку за шесть недель. А в прошлом году французским ученым из Университета Тулузы удалось усовершенствовать фермент кутиназу LCC, полученную из листового компоста листьев, которая работала эффективнее фермента из Ideonella sakaiensis: она смогла расщепить до 90 процентов ПЭТ на мономеры за 10 часов. Однако все еще существует потребность в более эффективных ферментах, позволяющих масштабировать процесс переработки.
Теперь исследователи во главе с Феличе Куартинелло (Felice Quartinello) из Венского университета природных ресурсов и естественных наук решили использовать ферменты, производимые микроорганизмами рубца жвачных животных, для разложения полиэфиров. Этот процесс в перспективе можно масштабировать, учитывая широкое распространение скотобоен.
Рубец — самый большой отдел желудка крупного рогатого скота. Микробиом рубца насчитывает около 1010 микроорганизмов на 1 миллилитр рубцовой жидкости и представлен несколькими сотнями видов обитателей, большинство из которых производят ферменты для переваривания клетчатки, крахмала и сахара. Рацион жвачных животных включает растительные полиэфиры и, следовательно, некоторые населяющие животных микроорганизмы способны синтезировать ферменты (эстеразы, липазы и кутиназы), расщепляющие сложноэфирные связи.
Исследователи посетили одну из австрийских скотобоен, чтобы взять рубцовую жидкость коровы. Затем они инкубировали эту жидкость с тремя полиэфирами (ПЭТ, ПЭФ, ПБАТ) в виде порошка и пленки, чтобы понять, насколько эффективно полимеры будут гидролизоваться в разных формах. Ученые инкубировали 5 грамм порошка (каждого полимера) с 2 миллилитрами рубцовой жидкости в калий-фосфатном буфере. Инкубацию проводили в течение 72 часов в орбитальном шейкере на скорости 150 оборотов в минуту при 40 градусах по Цельсию (как в рубце). Затем то же самое исследователи проделали с полимерными пленками (ПЭТ, ПБАТ и ПЭФ) размерами полтора на один сантиметр.
Далее при помощи высокоэффективной жидкостной хроматографии ученые проанализировали продукты ферментативного гидролиза всех трех полимеров. Продуктами расщепления ПЭТ были: терефталевая кислота, моно-(2-гидроксиэтил)терефталат и бис-(2-гидроксиэтил)терефталат; ПБАТ гидролизовался с образованием моногидроксибутилтерефталата и бис-(4-гидроксибутил)терефталата, а продуктом распада ПЭФ была 2,5-фурандикарбоновая кислота.
Через 72 часа из ПЭТ и ПБАТ образовалось 0,6 и 0,75 миллимоль продуктов гидролиза, а из ПЭФ было получено 4,8 миллимоль продуктов. Ферментативный гидролиз полимеров в виде порошков прошел лучше по сравнению с гидролизом пленок. Однако, как в случае пленок, так и в случае порошков, ПЭФ расщеплялся эффективнее других полимеров. Это связано с гибкостью полимерной цепи, которая улучшает сорбцию ферментов. Кроме того, длина цепи и межмолекулярные связи могут влиять на гидролиз.
Чтобы идентифицировать микробное сообщество рубца, исследователи выделили генетический материал из одного миллилитра рубцовой жидкости для секвенирования. Среди бактерий в рубце преобладали бактерии рода Pseudomonas, которые могли играть важную роль в гидролизе полиэфиров. Известно, что эти бактерии способны синтезировать эстеразы, липазы и кутиназы, гидролизующие сложноэфирные связи. Что касается грибов (Aspergillus, Penicillium, Candida), живущих в рубце, они тоже способны производить различные гидролазы (липаза и эстераза) и, следовательно, участвовать в гидролизе полимеров. По мнению исследователей, микробное сообщество, скорее всего, эффективно гидролизует полиэфиры из-за комбинации ферментов, синтезируемых различными обитателями рубца.
Переработка пластика при помощи микроорганизмов — многообещающий метод. Недавно биохимики из Шотландии с помощью сконструированного штамма кишечной палочки Escherichia coli превратили терефталевую кислоту, полученную из ПЭТ-бутылок, в ванилин.
Виктория Барановская
Эти эффекты зависели от пола
Американские исследователи выяснили, что прием каннабидиола беременными мышами связан с нарушениями термической болевой чувствительности, способности к решению задач и возбудимости префронтальной коры мозга у их потомства, причем эти эффекты зависят от пола. Отчет о работе опубликован в журнале Molecular Psychiatry. В странах, где препараты конопли разрешены для медицинского или рекреационного применения, некоторые беременные женщины принимают каннабидиол (второй по количеству каннабиноид после тетрагидроканнабинола) в чистом виде или в составе медицинской марихуаны для борьбы с тошнотой, считая, что это безопасно. При этом каннабидиол, не обладающий психоактивными свойствами, проникает через гематоплацентарный барьер и связывается с многими рецепторами, принимающими участие в развитии мозга, в том числе серотониновыми 5-HT1A, термочувствительными ваниллоидными TRPV1 и калиевыми каналами Kv7. Возможные последствия этого для потомства остаются малоизученными. Чтобы разобраться в этом вопросе, сотрудники из Университета Колорадо под руководством Эмили Энн Бейтс (Emily Anne Bates) вводили внутрижелудочно мышам с пятого дня беременности (примерно конец первого триместра) до родов 50 миллиграмм каннабидиола (высокая доза) в подсолнечном масле на килограмм массы тела ежедневно. Животные из контрольной группы получали только подсолнечное масло. На продолжительность беременности, набор массы тела в течение нее, размер и пол помета прием препарата не влиял. Он и его метаболиты полностью вывелись из плазмы мышат на восьмой день от рождения. Подошвенный тест на аппарате Харгиривза в возрасте 11 недель показал, что после внутриутробного воздействия каннабидиола у потомства мужского, но не женского пола значительно (p = 4,99 × 10-8) понижен порог термической болевой чувствительности. При нокауте гена TRPV1 он не изменялся, а значит, эффект связан именно с этими рецепторами. По данным тестов с темно-светлой камерой и различными лабиринтами, прием каннабидиола во время беременности не влиял на уровень тревожности, компульсивность и пространственную память потомства. В экспериментах с клетками-головоломками выяснилось, что после такого воздействия самки, но не самцы медленнее (p = 0,02) справляются с решением задач, что, вероятно, связано с гиперактивацией 5-HT1A-рецепторов. Электрофизиологическое исследование в возрасте 14–21 дня показало, что у таких самок повышен (p = 0,00007) порог запуска потенциала действия (то есть снижена возбудимость) Kv7-положительных пирамидных нейронов слоя 2/3 префронтальной коры, отвечающей за обучение и исполнительные функции. Плотность, размеры и морфология дендритных шипиков этих клеток затронуты не были, однако амплитуда возбуждающих потенциалов, вызванных активацией глутаматных AMPA-рецепторов, оказалась существенно снижена (p = 0,0009). У самцов подобных изменений не наблюдалось. Полученные данные свидетельствуют о том, что ежедневный прием высоких доз каннабидиола на протяжении последних двух триместров беременности мышами вызывает изменения физиологии нейронов и развития нервной системы у потомства, что в дальнейшем проявляется сенсорными и поведенческими расстройствами, причем эти эффекты зависят от пола животных. Авторы работы намерены уточнить, как на них влияют доза препарата и его прием в отдельные периоды беременности. В 2022 году канадские исследователи сообщили, что около двух процентов их беременных соотечественниц употребляют марихуану, причем это коррелирует с повышенным риском преждевременных родов, низкой массы ребенка при рождении, недостаточным или избыточным весом для гестационного возраста, любых врожденных аномалий, кесарева сечения и гестационного диабета.