Физики скомбинировали метод туннельной спектроскопии в режиме накачки-зондирования с электронным парамагнитным резонансом для исследования свободной динамики двух запутанных спинов. Для этого они поместили два гидрированных атома титана на поверхность кристаллического оксида магния и создали условия для возникновения квантовой запутанности. Исследование опубликовано в Science.
Одна из самых важных задач в современной прикладной физике — это научиться контролировать когерентную динамику квантовых систем. Исторически физики начинали делать это на простейших двухуровневых системах — одиночных кубитах. На сегодняшний день существует множество реализаций кубитов, включающих сверхпроводящие контуры или NV-центры, однако квантовые системы на основе пары уровней обыкновенных атомов со спином, равным 1/2, до сих пор привлекают внимание ученых и инженеров. Оба состояния и их суперпозицию в этом случае определяет проекция атомного спина.
Управление и считывание таких состояний у одиночных атомов уже удалось реализовать с помощью комбинации сканирующей туннельной микроскопии с методами электронного парамагнитного резонанса (ЭПР). Главным инструментом при этом стало микроволновое излучение, чьи импульсы позволяют проводить манипуляции с одиночным атомом и наблюдать спиновую динамику на наносекундном масштабе. Однако при попытке применить эту методику к паре взаимодействующих атомов выяснилось, что одних микроволн недостаточно для того, чтобы изучать свободную эволюцию такой системы. Причина в том, что при достаточно сильном взаимодействии между атомами, внутренняя динамика имеет гораздо меньшие временные масштабы, и это требует применения новых методов манипуляции атомными спинами.
Группа физиков из Нидерландов и Германии под руководством Александра Отте (Alexander Otte) из Делфтского технического университета, Нидерланды, показала, что существующие ограничения можно обойти, если использовать метод туннельной спектроскопии в режиме накачки-зондирования. В его основе лежит зависимость проводимости контакта «зонд-атом» от взаимной ориентации спинов с обоих его концов. Режим накачки-зондирования реализуется путем подачи нескольких пар электрических импульсов на зонд. Первый импульс (импульс накачки) переводит систему в исследуемое состояние, второй (зондирующий импульс) измеряет ее состояние через некоторое время. Последовательно увеличивая это время от пары к паре, можно получать информацию о свободной эволюции спиновой системы.
В качестве объектов исследования физиками были использованы гидрированные атомы титана, размещенные на поверхности двухслойных островов оксида магния, выращенных на слое серебра. Одна из особенностей таких атомов — это анизотропный фактор Ланде. Это означает, что положение резонансов на ЭПР-спектре зависит от положения и ориентации атома в кристаллической решетке. Пользуясь этим, авторы изготовили димер из атомов титана, демонстрирующих разные отклики на магнитное воздействие (они назвали их «вертикальным» и «горизонтальным», соответственно). Это было сделано для того, чтобы иметь возможность отстраивать атомы из состояния запутанности, вызываемого совпадением их зеемановских расщеплений.
Управление расщеплением в свою очередь производилось путем изменения расстояния между атомом и зондом. От этого расстояния зависит величина магнитного поля, производимого атомами железа, размещенными на кончике зонда. При некотором поле димер можно перевести в запутанное состояние, одним из проявлений которого стала так называемая «флип-флоп» эволюция, то есть осциллирующий характер спиновой динамики. Именно такие осцилляции были измерены авторами статьи с помощью туннельной спектроскопии.
Физики построили подробную математическую модель изучаемого процесса, которая продемонстрировала согласие с экспериментом. Они обнаружили также, что «флип-флоп» частота не зависит от отстройки от резонанса. Такое неожиданное поведение авторы попытались объяснить отсутствием полной компенсации орбитальных моментов из-за симметрий кристаллической решетки.
Ученые подчеркивают, что использованный метод влияет только на спин, находящийся непосредственно под иглой зонда, независимо от того, в каком состоянии находится весь димер. Развитая техника, по их мнению, может быть использована для манипуляции целыми спиновыми массивами, что может быть полезно для спинтроники и магноники, а также для создания спиновых квантовых симуляторов.
Физики уже многого достигли в управлении спинами. Ранее они выяснили, что на спиновую динамику влияет толщина пленки, и даже поставили рекорд в переключении спина.
Марат Хамадеев
Он расходится с последними теоретическими предсказаниями со статистической значимостью в 5σ
Физики представили новые результаты эксперимента Muon g-2 в Фермилабе по измерению аномального магнитного момента мюона. Согласно анализу данных двух новых сеансов измерений, физикам удалось больше чем в два раза уменьшить неопределенность измеренного значения. С учетом всех собранных Muon g-2 экспериментальных данных, новый результат противоречит последним предсказаниям Стандартной модели со статистической значимостью в 5,0σ. Согласно авторам статьи, препринт которой доступен на сайте эксперимента, статистическая значимость расхождения, вероятно, ослабнет, если включить в расчет предсказаний недавно опубликованные теоретические и экспериментальные результаты других коллабораций. Также о результатах эксперимента рассказывается на сайте ИЯФ имени Будкера, а запись научного семинара с докладом о последних результатах Muon g-2 доступна на YouTube.Значение магнитного момента мюона — одна из немногих напрямую измеряемых аномалий в современной физике, которая может указывать на существования физики за пределами Стандартной модели. Дело в том, что в это значение вносит вклад взаимодействие этого тяжелого лептона с существующими в нашей модели Вселенной виртуальными частицами. За счет большой массы мюона такой вклад различим на фоне хорошо предсказываемых электромагнитных поправок. Он же позволяет судить о существовании потенциально неоткрытых полей и частиц: расхождения измеренного значения магнитного момента и теоретических расчетов может указывать на неполноту теории. Однако сложность таких измерений в том, что относительная разница измеренного экспериментом и предсказанного теорией значений может проявляться только в шестом знаке после запятой. Для достижения такой точности измерений необходим большой массив экспериментальных данных, а также уверенность в том, что из их анализа были исключены любые систематические вклады и неопределенности в теории. Кроме того, сами предсказания Стандартной модели обладают погрешностью и зависят от параметров существующих в ней частиц и процессов. Два года назад мы уже рассказывали о природе аномального магнитного момента мюона и о том, как эксперимент Muon g-2 впервые увидел расхождение теории и эксперимента. Тогда в совокупности с данными двадцатилетней давности эксперимента-предшественника E821 в Брукхейвенской национальной лаборатории статистическая значимость расхождения составила 4,2 стандартных отклонения (или 4,2σ), чего лишь немного не хватило до общепринятого порога официального открытия в 5σ. Вчера участники коллаборации Muon g-2, в том числе физики из институтов Великобритании, Германии, Италии, Китая, России и США, представили результаты анализа данных двух новых сеансов измерений, которые состоялись в 2019 и 2020 годах. Полученное значение аномального магнитного момента совпало в пределах погрешности с результатами за первый сеанс измерений и эксперимента E821, а относительную точность измерения удалось уменьшить больше чем в два раза: с 0,46 до 0,20 миллионных долей. Как и в первом сеансе набора данных, магнитный момент мюона физики измеряли через разность циклотронной частоты и частоты спиновой прецессии поляризованных антимюонов (частица с противоположным по знаку мюону зарядом, но теми же свойствами) в накопительном кольце в сильном магнитном поле. Эта разность частот пропорциональна абсолютной величине аномального магнитного момента мюона и магнитному полю. Поэтому непрерывно измеряя магнитные поля внутри кольца с помощью ЯМР-проб, физики могли получить искомое значение магнитного момента. При этом сам антимюон в накопительном кольце достаточно быстро распадался на два нейтрино и позитрон, который за счет меньшей массы отклонялся в сторону внутреннего радиуса накопительного кольца, покрытого калориметрами. Искомую разность частот измеряли по колебаниям в количестве электронов, зарегистрированных с помощью этих детекторов. Столь сильно уменьшить погрешность измерений физикам удалось не только за счет увеличения количества набранных данных в 5 раз, но и благодаря оптимизации установки и процесса анализа данных. К примеру, ученые обернули кольцо в теплоизолирующий кожух и улучшили систему кондиционирования экспериментального холла, чтобы уменьшить колебания температуры, которые влияли на магнитное поле внутри установки. Большой вклад также внесли улучшение хранения пучка в кольце и оптимизация квадрупольных и дипольных магнитов в установке с обновленной техникой измерения их влияния на динамику пучка. В результате систематическая погрешность измерений составила всего 0,07 миллионных долей, что уже меньше цели эксперимента в 0,1 миллионных долей. К 2025 году физики собираются достигнуть цель и по статистической погрешности за счет обработки данных еще 3 сеансов набора данных, проведенных в 2021-2023 годах. Формально, с учетом всех собранных данных, измеренное экспериментом Muon g-2 значение аномального магнитного момента мюона уже сейчас противоречит предсказаниям Стандартной модели со статистической значимостью в 5σ, а с учетом данных эксперимента E821 — в 5,1σ. Однако участники коллаборации предостерегают от поспешных выводов: это сравнения с устаревшим расчетом теоретической группы эксперимента, опубликованным в 2020 году. По мнению ученых, недавно опубликованные данные эксперимента КМД-3 в Институте ядерной физики имени Будкера и теоретические расчеты коллаборации BMW должны повлиять на теоретические предсказания и потенциально сблизить их с экспериментально полученным значением. Еще одно прямое указание на Новую физику — переносчик слабого взаимодействия W-бозон. Год назад мы рассказывали о том, что измеренное коллаборацией CDF значение массы этой частицы разошлось с предсказаниями Стандартной модели на 7 стандартных отклонений.