Британские
и
корейские химики
сумели
продлить жизнь платиновым катализаторам
для очистки автомобильных
выхлопов. Они
сначала
ввели платину в решетку перовскита,
а
затем восстановили ее и получили
наночастицы, равномерное распределенные
по поверхности перовскита. В
результате катализатор стал не
только стабильнее,
но и эффективнее,
так как кислород из
перовскитной решетки усилил каталитическое
действие платины.
Результаты
исследования опубликованы
в журнале Nature
Chemistry.
Выхлоп
автомобилей содержит в себе одновременно
несколько
ядовитых газов:
это газообразные
углеводороды,
монооксид угдерода СО,
оксиды
азота NO
и
NO2.
Для
того чтобы эти вещества не попадали в
атмосферу, их пропускают через
каталитический конвертер. Очистка
включает
в себя несколько процессов
— окисление
монооксида
углерода и остатков газообразных
углеводородов,
восстановление
примесей оксидов азота
до
молекулярного азота N2
и
удаление
аммиака, который получается из
оксидов азота
в виде побочного продукта.
Лучшими катализаторами считаются благородные металлы — платина и палладий. Чаще всего в конвертерах используют катализатор из пористого оксида алюминия c добавками от половины до двух массовых процентов платины в виде наночастиц. Это позволяет экономить ценный металл и делать катализаторы дешевле. Однако, при высокой температуре платиновые наночастицы постепенно собираются в более крупные частицы и агломераты (этот процесс называют спеканием), от этого эффективность катализатора снижается. Поэтому чем старше автомобиль, тем больше вредных газов он выбрасывает в атмосферу.
Джон Ирвайн (John T. S. Irvine) из Сент-Эндрюсского университета и его коллеги из Южной Кореи и Великобритании попробовали продлить жизнь платиновых наночастиц, поместив их в другую матрицу — титанаты лантана со структурой перовскита.
С термином перовскит в современной литературе все немного запуталось. Изначально, перовскит, это минерал CaTiO3 (титанат кальция). Это вещество открыли на Урале в 1839 году и назвали в честь российского министра Льва Перовского, который увлекался минералогией. Титанат кальция имеет очень характерную кристаллическую решетку – катионы титана располагаются в вершинах кубической ячейки, более крупные катионы кальция в центре ячейки, а анионы кислорода – на ребрах куба, образуя вокруг каждого иона титана октаэдры TiO6, соединенные вершинами. Такую решетку назвали решеткой перовскита, но постепенно термин стал употребляться более широко, и сейчас перовскитами в литературе называют все соединения с формулой ABX3, которые имеют такое строение. В последнее время термин «перовскит» у всех на слуху, потому что соединения из семейства смешанных органо-неорганических галогенидов свинца АPbBrxI3-x используются в солнечных элементах и фотодетекторах. С точки зрения химии, это соединение из совсем другого класса: вместо кислорода в них бром и иод, вместо титана свинец, вместо кальция органические катионы метиламмония и формамидиния, и даже заряд каждого иона вдвое меньше. Однако кристаллическая решетка АPbBrxI3-x устроена так же, как и решетка CaTiO3 – октаэдры PbI6 располагаются в узлах решетки, а остальные катионы – в пустотах между ними. В нынешней заметке речь идет о титанатах лантана LaTiO3 с добавками стронция и кальция -- довольно близких родственниках исходного CaTiO3.
Согласно плану авторов, платина сначала должна войти в решетку перовскита LaTiO3 в положение титана, а затем — восстановиться и выделиться в виде отдельной фазы наночастиц. Такие наночастицы будут равномерно распределены по поверхности материала и стабилизированы за счет связи с перовскитной матрицей. Однако ввести платину в состав решетки перовскита оказалось непросто — оксид платины PtO2 и другие родственные ему соединения нестабильны и при нагревании большая часть платины восстанавливалась, не успев войти в решетку перовскита. Для решения этой проблемы Ирвайн и его коллеги синтезировали промежуточную соль Ba3Pt2O7 — сами они назвали это методом Троянского Коня. Это соединение оказалось более стабильно и выдержало нагрев до 100 градусов Цельсия в атмосфере кислорода. Далее все пошло по плану — платина вошла в структуру перовскита в положение титана, а более крупный барий — в положение лантана. После нагревания полученного перовскита до 700 градусов в течение двенадцати часов вся платина перешла в степень окисления ноль и покинула решетку. Авторы протестировали два немного отличающихся составом перовскита— La0.4Ca0.3925Ba0.0075Pt0.005Ti0.995O3 (Pt-LCT) и La0.4Sr0.3925Ba0.0075Pt0.005Ti0.995O3 (Pt-LST). В результате остановились на Pt-LCT, который более однородный размер наночастиц платины — около пятнадцати нанометров.
Полученные композиты оказались отличными катализаторами: полная конверсия СО на Pt-LCT произошла уже при температуре 190 градусов Цельсия. В случае коммерчески доступного катализатора Pt-Al203, полной конверсии можно добиться только при температуре 220 градусов Цельсия. Конверсия других примесных газов тоже была в среднем на 20 процентов выше, чем у Pt-Al203 в тех же условиях. Причина такой высокой активности Pt-LCT — каталитическое действие поверхностного кислорода из перовскитной решетки, которое усилило действие частиц платины.
Стабильность платиновых наночастиц в новом катализаторе тоже оказалась лучше. После непрерывного нагревания Pt-LCT катализатора до температуры 800 градусов Цельсия в течение 350 часов средний размер платиновых наночастиц остался таким же, как и был — около пятнадцати нанометров. Активность катализатора тоже осталась практически неизменной, в то время, как Pt-Al203.в тех же условиях заметно потерял в активности — например, температура конверсии СО поднялась на тридцать градусов Цельсия.
Ирвайн
и его коллеги
предполагают, что новые
платиново-перовскитные
композиты можно будет использовать не
только в автомобильных фильтрах, но и
для
катализа других реакций.
В
начале года китайские
химики разобрались
в том,
как протекает реакция образования
водорода на катализаторе
из платиновых наночастиц в матрице
карбида молибдена. Авторы нашли
оптимальное количество платины в
композите и сумели получить водород
при рекордно
низкой температуре в 40
градусах Цельсия.
Наталия
Самойлова
Возраст артефакта около 2500 лет
Американские ученые проанализировали органические остатки, которые сохранились внутри египетского алабастрона, найденного много лет назад на Ближнем Востоке. Химические соединения, выявленные исследователями, указали на то, что в ценном сосуде хранился опиум. Вполне вероятно, что находка относится к V веку до нашей эры, о чем сообщается в статье, опубликованной в Journal of Eastern Mediterranean Archaeology and Heritage Studies.