Российские ученые изучили структуру одного флуороген-активирующего белка, который активно применяют как инструмент для биомолекулярных исследований, и нашли способ его уменьшить. В результате авторы получили самый маленький в мире флуороген-активирующий белок, что делает его еще более удобным в использовании. Работа опубликована в Chemical Science.
Флуоресцентные метки часто используются в биологии для изучения структуры клеток, а также биологических процессов на клеточном уровне. Большое количество таких меток — флуорецсентные белки. Ученые вносят в клетки гены этих белков, и сами клетки начинают производить необходимые метки по предоставленной инструкции. Иногда применяются и химические метки из малых молекул (красок), которые флуоресцируют в ответ на связывание с чем-либо или в результате химической реакции. Однако и у тех, и других есть свои ограничения в использовании — флуоресцентные белки достаточно большие, и им требуется время на созревание в присутствии кислорода, а краски нередко помечают не только целевые объекты.
С этой точки зрения обещающими инструментами выглядят флуорогены: вещества (краски) с очень слабой флуоресценцией в свободном состоянии, которые становятся очень яркими, как только связываются с еще одним компонентом, например, активирующим флуороген белком. Таким меткам не нужен кислород для созревания, и их можно использовать для исследований в анаэробных условиях. Флуоресцентным сигналом этих меток можно управлять, добавляя или смывая сам флуороген. Еще одна важная характеристика — размер: чем метка меньше, тем меньше она влияет на природную динамику исследуемой системы. Флуороген-активирующие белки, как правило, в два раза меньше флуорецсентных белков.
Один из таких активирующих белков был разработан на основе бактериального фоторецептора. Замена нескольких аминокислотных остатков позволила его использовать как активатор для группы флуорогенов. Однако структура этого белка оставалась неизвестной.
Ученые из Института биоорганической химии РАН под руководством Михаила Баранова при помощи ЯМР-спектроскопии изучили структуру этого белка в свободной форме и в комплексе с краской-флуорогеном. Исследователи заметили, что часть белка на его N-конце не имеет четкой структуры в свободном состоянии и меняет форму, только когда с белком связывается краска. Ученые предложили, что поскольку процесс связывания флуорогена начинается еще до изменения структуры N-конца, то, возможно, активировать флуорецсенцию краски белок может и без этой части.
Авторы укоротили молекулу на 26 аминокислотных остатков. «Карман» для связывания краски увеличился, и белок не смог активировать ранее описанные в литературе флуорогены. Тогда исследователи составили библиотеку новых вариантов красок и выбрали ту, которая подошла к укороченному белку. Таким образом, ученые создали самый маленький в мире функциональный флуороген-активирующий белок, состоящий всего из 98 аминокислотных остатков. Флуоресценция краски после связывания с новым белком увеличивается больше чем в 100 раз, квантовый выход составляет 55 процентов, а константа связывания близка к 1 микромолю — по всем этим параметрам белок похож на своего предшественника.
Авторы работы также показали новый белок в работе: трансфицировали им клетки, при этом к белку добавили последовательности, заставляющие его локализоваться на той или иной структуре в клетке. Возникающая при добавлении флуорогена локальная флуоресценция позволяет визуализировать строение клетки.
Ученые показали, что краска связывается с белком нековалентно, и ее легко можно смыть с клеток и добавить заново.
Ранее ученые случайно создали краску для наблюдения за процессом клеточного транспорта: вместо флуоресценции в ответ на окислительный стресс изучаемая молекула стала кристаллизоваться вслед за движением кинезина.
Вера Сысоева
Изучать на них магниторецепцию не получится
Исследователи из Великобритании и Германии на протяжении шести лет воздействовали суммарно почти на сто тысяч дрозофил магнитным полем и выяснили, что они не меняют свое поведение под действием этого поля и в целом никак на него не реагируют. Это опровергло результаты предыдущих экспериментов, где чувствительность мух к магнитному полю была доказана, — прошлые результаты ученые посчитали ложноположительными. Работа опубликована в Nature. Некоторые животные обладают магниторецепцией — например, перелетные певчие птицы мигрируют в основном по ночам и ориентируются по магнитному полю земли. Точно не ясно, как работает их внутренний компас, но основная гипотеза такая: в сетчатке из глаз есть криптохромы — светочуствительные белки, которые реагируют на магнитное поле, а в мозге — нейроны, которые обрабатывают информацию, поступающую с магниторецепторов сетчатки. Такую же способность ученые обнаружили и у летучих мышей. По некоторым данным, магнитное поле чувствуют и плодовые мушки дрозофилы (Drosophila). Криптохромы из их сетчатки реагировали на магнитное поле в экспериментах in vitro, а в других исследованиях [1, 2, 3] под действием магнитного поля их поведение менялось. Поэтому мух иногда используют как модельный организм, чтобы изучать магниторецепцию: геном дрозофил можно редактировать, и эксперименты над ними ставить проще, чем над птицами. Марко Бассетто (Marco Bassetto) из Ольденбургского университета имени Карла фон Осецкого и его коллеги из Великобритании и Германии решили проверить, на самом ли деле дрозофилы чувствительны к магнитному полю. Они воспроизвели несколько экспериментов на гораздо большей выборке и в более контролируемых условиях. Сначала они запустили мух в Т-образный лабиринт, к одному из рукавов которого было приложено магнитное поле с индукцией около 500 микротесла. Установку разместили в электромагнитно-экранированной камере в деревянном здании — в итоге фоновые радиочастотные поля сильно ослаблялись и не должны были повлиять на эксперимент. Дрозофил тестировали группами по 100 особей; предполагалось, что наивные мухи будут избегать рукава с магнитным полем (как это было в ранних экспериментах), а если научить их ассоциировать поле с наградой в виде сахарозы, то они станут предпочитать этот рукав. Однако ничего из этого не подтвердилось: и наивные, и обученные дрозофилы выбирали оба рукава с одинаковой частотой. А вот в контрольных экспериментах мухам удалось связать награду и запах. Всего ученые провели почти 1000 тестов и протестировали таким образом 97650 мух. Затем они поместили дрозофил в вертикальные пластиковые трубки, помещенные между двойными катушками. К одной из трубок было приложено магнитное поле с индукцией 500 микротесла, а к другой — нет. В таких трубках мухи обычно поднимаются, сопротивляясь земному притяжению, — это называется отрицательным геотаксисом (личинки некоторых насекомых, напротив, стремятся вниз, к земле). В предыдущих исследованиях под действием тусклого синего цвета и магнитного поля мухи поднимались медленнее. Здесь же ученые не обнаружили никакой разницы в скорости подъема мух в зависимости от наличия магнитного поля. Однако, как и в раннем эксперименте, под действием красного цвета дрозофилы поднимались медленнее, чем под действием синего (магнитное поле все еще не влияло). Затем ученые усовершенствовали экспериментальную установку и проверили в ней магнитные поля 0,90, 220 и 300 микротесла. Однако и тогда магнитное поле не влияло на скорость подъема насекомых. В предыдущих исследованиях также сообщалось, что магниточувствительность мух проявляется под действием более коротких волн света. Авторы проверили и это, но и здесь дрозофилы никак не реагировали. Авторы заключили, что дрозофилы, судя по всему, не способны ощущать магнитные поля околоземной силы (ниже 500 микротесла). А статистический анализ показал, что результаты ранних экспериментов были, вероятнее всего, ложноположительными: на это указывают небольшие выборки и низкая статистическая мощность. Таким образом, изучать магниторецепцию лучше на ночных мигрирующих певчих птицах. А ранее исследователи из Канады и США выяснили, что нейроны птиц, реагирующие на магнитное поле, активны только во время миграции. Во время ночного отдыха их активность снижается.