Ученые пронаблюдали, как транспортная молекула кинезин, которая ответственна за перемещение молекул в клетке, передвигается по микротрубочкам – «дорожным путям» клетки. Это удалось благодаря тому, что разрабатываемый учеными молекулярный инструмент стал выполнять не те функции, которые от него ожидались. Вместо флуоресценции в ответ на клеточный окислительный стресс молекула-сенсор стала кристаллизоваться вслед за движением кинезина. Статья опубликована в Nature Communications
Микротрубочки – полимерные структуры, которые играют роль дорожных путей в клетке. Двигательные молекулы (например, кинезины) связываются с микротрубочками и «шагают» по ним, стоит только грузу присоединиться к молекуле кинезина. В качестве источника энергии эти транспортные белки используют энергию разложения молекулы АТФ.
Обычно кинезины «ходят» из центра клетки к периферии, но также могут переносить грузы от аппарата Гольджи к эндоплазматическому ретикулуму и обратно. При этом аппарат Гольджи считается одной из органелл, с которых начинается образование микротрубочек, наряду с центросомами.
В целом у ученых уже есть способы подглядеть за моторными белками в клетках. Для этого, например, можно покрасить двигательные молекулы антителами к ним, или прикрепить к ним же флуоресцентные метки. Однако существующие методы позволяют помечать весь кинезин в клетке, независимо от того, активны ли молекулы прямо сейчас или нет. Учитывая, что одновременно в клетке активны только 30 процентов молекул кинезина, достаточно сложно изучать движение этих молекул в клетке имеющимися инструментами.
Малые молекулы, которые могут издавать видимый сигнал (свечение), также используют для изучения различных процессов в клетках. Обычно такие системы показывают, где протекает реакция с участием того или иного заданного учеными фермента. Однако подобных красок для кинезина, который и сам является ферментом, до сих пор описано не было.
Не стремились получить такую краску и ученые Женевского университета под руководством Николаса Винссингера (Nicolas Winssinger): исследователи хотели создать молекулу-сенсор, которая бы отражала окислительный стресс в клетках. Однако полученная молекула не реагировала на активные формы кислорода, зато образовывала протяженные кристаллы прямо внутри клеток. Заметив, что кристаллы подозрительно напоминают по форме клеточный скелет, авторы работы продолжили исследования. Эксперименты подтвердили их предположения: часть окрашенных микротрубочек находилась там же, где и кристаллы, которые расходились лучами от аппарата Гольджи.
Далее ученые выяснили, что самих по себе микротрубочек в пробирке недостаточно для того, чтобы их краска кристаллизовалась. Получалось, что изменения в ней вызывала какая-то ферментная активность, тесно связанная с микротрубочками – например, действие двигательных белков, расщепляющих АТФ.
Ученые продолжили работу и выяснили, что скорость образования кристаллов в клетке и их размер зависят от активности кинезина-1 в клетке. В тех культурах, где клетки производили мутантный (неспособный шагать по микротрубочкам) двигательный белок, количество кристаллов уменьшилось на 87 процентов, и остаточная активность, скорее всего, связана с небольшим количеством обычного кинезина в клетке. Когда ученые подавляли выработку кинезина в клетках, кристаллы исчезали.
Однако несмотря на то, что кинезины во время движения полагаются на энергию расщепления АТФ, в экспериментах вне клетки АТФ кинезину не понадобилась: краска все равно кристаллизовалась. Авторы работы сделали вывод, что кинезин может использовать разработанную ими флуорогенную краску как альтернативный субстрат, и в результате реакции и образуются флуоресцирующие кристаллы. Исследователи считают, что случайно полученный ими инструмент может помочь и дальше наблюдать за активностью двигательного белка в живых клетках.
Движение кинезинов по микротрубочкам интересует современных молекулярных биологов и химиков: механизм движения ученые уточнили не так давно. Сами же микротрубочки химики пробуют использовать в качестве молекулярных роботов, создавая из них управляемый рой, управлять которым помогает все тот же кинезин.
Вера Сысоева
Для этого растению понадобилось 15 минут
Японские ученые отследили механизм работы белков семейства LAZY, занимающих ключевое место в восприятии силы тяжести растениями. В покое белки экспонированы на поверхности статолитов — органелл, имеющих высокую плотность и лежащих из-за этого в нижних частях клетки. Но наклон ростков резуховидки Таля приводил к тому, что статолиты перемещались в новые нижние участки клетки, оставляя отпечаток из белков LAZY. Белки, перенесенные с мембраны статолитов на цитоплазматическую мембрану, маркируют новое направление роста и изгиба корня. Исследование опубликовано в журнале Science. У корней большинства высших растений выражен гравитропизм, то есть движение в сторону источника силы тяжести. За гравитропизм корней отвечают клетки-статоциты, входящие в состав корневого чехлика. В них находятся органеллы статолиты — родственники хлоропластов, заполненные крахмалом и лежащие в нижней части клетки из-за более высокой, чем у цитоплазмы, плотности. Статолиты маркируют направление изгиба и роста корня, поскольку клетка экспортирует фитогормон ауксин в ту сторону, куда указывают органеллы, а ауксин вызывает растяжение клеток (по такому принципу поворачиваются растения подсолнечника в течение дня) и стимулирует их деление. Все эти детали были известны еще 50 лет назад, но механизмы, связывающие оседание статолитов и направление транспорта ауксина, за прошедшее время так и не были расшифрованы. Впрочем, было установлено, что белки семейств LAZY и RLD имеют отношение в гравитропизму, ведь корни растений, у которых выключены эти гены, перестают расти вниз. Молекулярные биологи и физиологи растений из нескольких университетов США и Японии при участии Миё Тэрао Морита (Miyo Terao Morita) из Национального института фундаментальной биологии в Окадзаки сосредоточились на изучении работы двух белков семейства LAZY — LZY3 и LZY4 — в корневом чехлике резуховидки Таля (Arabidopsis thaliana). Анализ аминокислотной последовательности LZY3 и LZY4 показал, что у белков нет трансмембранного домена для заякоривания в мембране, зато есть гидрофобные и положительно заряженные участки для взаимодействия с фосфолипидами внутреннего слоя мембраны. Точечные мутации в этих участках белков нарушали гравитропизм у ростков резуховидки. Поскольку белок с таким строением неспособен прочно фиксироваться в мембране, но при этом критически важен для гравитропизма, то, предположили биологи, он может слабо прикрепляться попеременно к плазматической мембраной и к гликолипидам внешней мембраны статолитов. И действительно, LZY3 и LZY4 были обнаружены на поверхности обеих мембран. Далее ученые при помощи конфокальной микроскопии отследили, как меняется распределение LZY4 в живой клетке после наклона ростков на 90-135 градусов. Уже спустя три минуты статолиты оказывались в нижней части клетки. Через 15 минут обнаружились метки LZY4 на прилежащем участке плазмалеммы, а первые признаки изменения формы корня появились через полчаса с начала эксперимента. Помимо воздействия гравитацией, ученые подвигали амилопласты внутри живых клеток при помощи оптического пинцета, чтобы исключить, что полярность клетки управляется какими-либо другими органеллами, имеющими высокую плотность. Как и в эксперименте с наклоном ростка, через несколько минут флуоресцентная метка, пришитая к LZY4, переходила с пластид на плазматическую мембрану. После оседания LZY на мембране с ним связывались белки семейства RLD, которые, в свою очередь, привлекают на мембрану белки-экспортеры ауксина. Таким образом, японские ученые описали еще один механизм механорецепции живыми организмами. По словам авторов статьи, принцип работы LAZY-зависимых сенсоров, чувствующих направление силы притяжения, но не ее величину, похож на работу «аналогового» инклинометра. Человеческие же проприорецепторы, полукружные канальцы и отолитовые органы работают как акселерометры, детектирующие линейное или угловое ускорение при движении головы, внутренних органов или мышц. Подробнее о принципе их работы можно прочитать в нашем материале «Премия за самочувствие». Градиент ауксина в корне влияет на только на его рост в физиологических условиях, но и, к примеру, на заживление ран.