Микробиологи зафиксировали интересную адаптацию к окислительному стрессу в кабельных бактериях. Оказалось, что небольшая часть нитчатой колонии, наиболее приближенная к источнику кислорода, с удивительно высокой интенсивностью использует его для энергетически выгодного аэробного дыхания. Остальная же часть находится в анаэробной среде, избегая проблем, вызываемых окислительным стрессом. Статья опубликована в Science Advances.
С тех пор как в результате Кислородной катастрофы (2,4-2,0 миллиарда лет назад) в атмосфере появился молекулярный кислород, живые существа стали подвергаться окислительному стрессу. Какие-то микроорганизмы учились справляться с активными формами кислорода внутри клеток, а другие (в том числе и появляющиеся эукариоты) стали извлекать из него пользу, используя кислород как акцептор электронов.
Сейчас в условиях сильной гипоксии (крайне низкой концентрации кислорода) обитают микроорганизмы, населяющие влажные среды обитания: в донных осадках, биопленках или кишечнике животных. В ходе эволюции эти микробы разработали различные механизмы, которые позволяют им жить на границе кислородной и бескислородной среды. Интересной тактикой пользуются морские «кабельные» бактерии из семейства Desulfobulbaceae: их колонии формируют длинные (до нескольких сантиметров) нити-кабели, на всю длину которых протягивается пока еще неизвестный исследователям проводящий электричество материал. Эти нити-колонии протягиваются из бескислородной среды, откуда бактерии получают сульфидные соединения (доноры электронов) в кислородную (где есть молекулярный кислород, акцептор электронов). Таким образом, процесс клеточного дыхания в колониях разбит на две части и разнесен в разные части нитей.
Исследователи из Орхусского университета из группы Луиса Нильсена (Lars Nielsen) наблюдали за поведением бактерий в специальной камере: образец донного грунта поместили на один конец, на другом находилось окошко с доступом кислорода. Образец грунта с населяющим его микробиом использовали, потому что выращивать кабельные бактерии в чистой культуре пока не удавалось.
В камере сформировался градиент концентрации кислорода. Там, где его концентрация приближалась к очень низким значениям (< 5 микромоль), различные бактерии из грунта (не кабельные) образовали различимую глазом «вуаль», проведя отчетливую границу между кислородной и гипоксийной средой. Эту границу ожидаемо пересекли нити кабельных бактерий. Геометрия камеры позволила, зная коэффициент диффузии кислорода, вычислить, как много кислорода потребляли отдельные бактерии в колонии.
К удивлению биологов, кабельные бактерии (те из них, которые пересекли границу и попали в кислородную среду) продемонстрировали очень высокие показатели потребления кислорода: 2200 наномоль молекулярного кислорода на миллиграмм белка в минуту. Для сравнения, предыдущий рекорд среди прокариот принадлежал бактерии Desulfovibrio termitidis с показателем 1570 наномоль молекулярного кислорода на миллиграмм белка в минуту. При этом сам механизм клеточного дыхания у кабельных бактерий еще только предстоит объяснить.
Попавшая в кислородную среду часть нитей составила меньшую долю колонии: всего 8,1±6,4 процента от всей ее биомассы. Таким образом, всего несколько клеток были ответственными за весь кислородный обмен колонии. Самые крайние клетки всегда старались держаться в среде с меньше чем 14 процентами насыщения воздухом. Чтобы достичь этого, вся колония меняла свое положение в ответ на небольшие изменения концентрации воздуха каждые 60 секунд. Возможно, сигнал между клетками передается путем изменения электрического напряжения нитей.
Через какое-то время ученые наблюдали необратимые изменения в клетках колоний, подвергнутых воздействию кислорода. Ученые предположили, что даже если клетки на конце нитей из-за воздействия кислорода умирают, то с эволюционной точки зрения такая стратегия все же выгодна: около 90 процентов колонии находится в среде с крайне низким содержанием кислорода, не рискуя попасть под разрушительное воздействие его активных форм. Такой подход стал примером интересной адаптации кабельных бактерий: их колонии одновременно используют мощный акцептор электронов (кислород) и достаточно эффективно избегают минусы пребывания в кислородной среде.
Кабельные бактерии используют в качестве донора электронов серу, также существуют микроорганизмы, использующие железо или азот. Не так давно ученые добавили к этом списку марганец, описав бактерии, которые его окисляют.
Вера Сысоева
Они нам кажутся почти в два раза легче своего реально веса
Исследователи из Великобритании предложили людям сравнить вес их собственных ладоней и грузов, подвешенных к рукам, чтобы выяснить, насколько верно люди оценивают массу своего тела и его частей. Проведенные эксперименты показали, что испытуемые сильно занижают вес собственных кистей — в одном из экспериментов он оказался на 49,4 процента ниже, чем реальный. Результаты опубликованы в Current Biology. Когда мы берем какой-то предмет, его ощущаемый вес связан с чувством усилия — величиной двигательных команд, которые направляются мышцам. За восприятие веса самого нашего тела и его частей тоже отвечает центральная нервная система, но нет конкретных сенсорных рецепторов, которые были бы в этом задействованы. Воспринимаемый вес тела может меняться из-за усталости, анестезии и других факторов. Пациенты, перенесшие инсульт с параличом конечности, часто жалуются на то, что конечность стала тяжелее. Протезы тоже кажутся людям более тяжелыми, хотя часто весят меньше реальной руки или ноги. Элиза Ферре (Elisa R. Ferrè) из Лондонского университета и ее коллеги решили выяснить, как люди воспринимают вес собственной кисти. В трех экспериментах участвовали 60 человек. До начала испытаний каждый участник опускал кисть левой руки, опирающейся на предплечье, на 30 секунд, чтобы оценить ее вес. Затем к уже лежащей на подушке руке крепили браслет, на который подвешивали грузы разной массы. Участники должны были сказать, что ощущалось тяжелее — кисть или груз. Грузом выступали пакетики с рисом, всего их было 16 штук, а их масса составляла от 100 до 600 грамм. В экспериментах ученые использовали психофизическую лестницу. Среднюю массу кисти, согласно ранее проведенным исследованиям, ученые взяли за 400 грамм. Первый подвешенный груз отличался на 200 грамм, то есть его масса составляла 200 либо 600 грамм — в зависимости от того, была лестница нисходящей или восходящей. Массу следующего груза выбирал алгоритм: если участник считал, что груз тяжелее ладони, следующий подвешенный груз был легче, и наоборот. Так спустя какое-то количество испытаний масса грузов начинала колебаться вокруг некоторой цифры — предполагаемой (участником) массы кисти. В первом эксперименте 20 участников просто сравнивали вес кисти и вес груза. Всего с ними провели три блока по 20 испытаний. В конце эксперимента ученые измерили реальную массу кистей участников, посчитав объем вытесненной рукой воды. Средняя масса кисти составила 327,9 грамм. Участникам, однако, казалось, что их кисть весит гораздо меньше: средний ощущаемый вес кисти оказался в среднем на 49,4 процента ниже, чем реальный, — то есть кисть, по мнению испытуемых, весила менее 200 грамм (p < 0,0001). Во втором эксперименте участвовало еще 20 человек. Теперь после серии испытаний ученые попросили людей в течение десяти минут делать упражнения с ручным тренажером, чтобы их кисть устала. Усталость люди оценивали по стобалльной шкале; до начала испытаний она составляла в среднем 10 баллов, а после упражнений — 70. И до, и после упражнений участники воспринимали свои ладони более легкими, чем есть на самом деле. Однако уставшая рука казалась им немного тяжелее, и ощущаемый вес был уже на 28,8 процента ниже реального (p < 0,01), по сравнению с 43,9 процента до упражнений (p < 0,0001). В третьем эксперименте другие 20 участников пытались взвесить свою руку и мешочки с рисом, однако теперь в каждом испытании они чувствовали поочередно и вес кисти, и вес груза. Независимо от того, что они взвешивали первым, рука все равно казалось им легче, чем она есть на самом деле — в среднем на 33,4 процента (p < 0,001) Исследователи предположили, что такое искажение восприятия, возможно, помогает нам сравнивать массы двух предметов, которые мы берем в обе руки. Если один предмет весит 400 грамм, а другой 500, и к ним добавляется еще и масса самих рук (около 3 килограмм), то распознать, что тяжелее, а что легче, будет сложно. Таким образом, перцептивное «вычитание» веса собственных конечностей может улучшить восприятие веса самих предметов. Также авторы считают, что занижение ощущаемого веса тела — механизм, который помогает нервной системе модулировать активность, или, наоборот, отдых. А воспринимаемый вес предметов можно изменить в виртуальной реальности. Например, если предмет движется медленнее, чем рука, он будет казаться немного тяжелее. А еще более тяжелыми виртуальные объекты станут, если надеть на запястья вибрирующие ремешки.