Ученые обнаружили бактерий, которые умеют окислять марганец и использовать энергию этой химической реакции для фиксации углекислого газа. Два вида бактерий в кокультуре превращали суспензию карбоната марганца в бляшки оксида марганца; в их транскриптоме нашли гены белков, которые могут осуществлять биохимические каскады хемосинтеза. Найденные микроорганизмы, считают авторы статьи в Nature, могут замыкать природные циклы марганца и влиять на круговорот других элементов.
Автотрофы — организмы, которые умеют фиксировать атмосферный углерод и синтезировать органические вещества из неорганических. Энергию для этого они берут либо из солнечного света и тогда называются фотоавтотрофами, либо из химических реакций неорганических веществ, тогда они — хемолитоавтотрофы.
Бактерии, которые используют для хемосинтеза соединения азота, серы и железа, известны уже более века. Известен также ряд микроорганизмов, которые окисляют марганец, но зачем они это делают, остается непонятным. Ученые предполагают, что из таких химических реакций микроорганизмы умеют получать энергию. Однако до сих пор это не удавалось подтвердить экспериментально, и хемоавтотрофы, растущие на марганцевых средах, не были найдены.
Джареду Ледбеттеру (Jared Leadbetter) из Калифорнийского технологического института повезло — он на несколько месяцев оставил в раковине грязную посуду с остатками карбоната марганца (II), залитую водой из под крана. Вернувшись в лабораторию, исследователь обнаружил, что вместо светлой суспензии карбоната колбы покрыты темным налетом — оксидом марганца. Ледбеттер предположил, что марганец окислили бактерии. С коллегой он перенес материал в среду со строго определенным составом, а в качестве контроля использовал аналогичные стерильные среды.
На стерильных чашках марганец не окислился даже через год, зато в среде с биологическим материалом уже через четыре месяца образовались темные оксиды марганца. Окисление требовало наличия кислорода и происходило при температуре до 42 градусов Цельсия, оптимально — при 34-40 градусах, что предполагает ферментативный характер катализа. Образование оксидов не происходило после добавления антибиотиков или пастеризации.
Ученые исследовали налет оксида марганца, который вырабатывали бактерии. Оказалось, что он состоит из бляшек диаметром 20-500 микрометров, темно-коричневых с темно-оранжевыми впячиваниями — в них и находилась большая часть бактерий.
Анализ рибосомной РНК показал, что в среде содержалось около 70 видов бактерий, однако после последовательного разбавления в растворе карбоната марганца выжило только два вида: один относится к типу Nitrospirae, а второй — к бета-протеобактериям. На момент написания статьи в отдельную культуру удалось выделить только второй вид, и он не мог в одиночку окислять марганец — значит, либо первый вид делает это самостоятельно, либо окисление марганца требует кооперации.
Количество окисленного марганца в кокультуре двух видов сначала возрастало экспоненциально, а затем замедлялось, и так же себя вела биомасса. Это соответствует представлениям о росте бактерий в культуре, а скорость роста колоний была сопоставима с таковой для известных хемолитотрофов.
Чтобы проверить, могут ли бактерии использовать энергию окисления марганца для фиксации углерода, исследователи вырастили их в культуре с меченым карбонатом марганца. В результате оба вида включили в себя тяжелый изотоп углерода — значит, что бактерии не просто умеют окислять марганец, но и используют энергию этой реакции для усвоения неорганического углерода, то есть являются автотрофами. С помощью анализа транскриптома ученые нашли активные гены белков, которые могли бы осуществлять биохимические каскады переноса электронов от внеклеточного марганца на кислород и автотрофную фиксацию углекислого газа.
Ученые рассчитали, что колония, выросшая из двух клеток (по одной каждого из двух видов), может за два года создать количество оксида, равное общему мировому запасу марганца. Найденные бактерии могут замыкать неизвестные до сих пор циклы марганца в природе, окисляя металл, который восстанавливают другие хемотрофы. Эти циклы, в свою очередь, могут взаимодействовать с круговоротом углерода, азота, водорода и кислорода.
Для хемосинтеза открытым бактериям необходим не только марганец, но и кислород, как и большинству современных автотрофов. Но до кислородной катастрофы, когда все организмы были анаэробами, приходилось обходиться без кислорода. Так действовали древнейшие найденные сероокисляющие бактерии, которых геологи обнаружили несколько лет назад.
Алиса Бахарева
Он повышает синтез высокомолекулярной гиалуроновой кислоты
Американские и российские исследователи обнаружили, что трансгенные мыши с повышенной экспрессией гена синтазы гиалуроновой кислоты от голых землекопов меньше подвержены спонтанному и индуцированному раку, дольше живут и дольше сохраняют здоровье. Кроме того, у таких животных значительно снижен уровень воспаления в различных тканях. Отчет о работе опубликован в журнале Nature. Голые землекопы (Heterocephalus glaber) выделяются среди грызунов крайне высокой продолжительностью жизни (в неволе — более 40 лет). Кроме того, у них слабее работают рецепторы внутреннего уха и механизмы торможения в нервной системе, зато замедлено клеточное старение и короче иммунная память (из-за чего у них больше наивных лимфоцитов для реакции на новые инфекции). Одно из главных отличий голых землекопов от других млекопитающих состоит в том, что они практически не болеют раком. Как было показано ранее, это связано с высоким содержанием в их тканях высокомолекулярной гиалуроновой кислоты. Этот гликозаминогликан составляет основу внеклеточного матрикса, участвует в пролиферации и миграции клеток, а также влияет на прогрессирование опухолей, причем его свойства зависят от молекулярной массы — высокомолекулярный обладает защитными свойствами, низкомолекулярный — наоборот. Голые землекопы продуцируют гиалуроновую кислоту с крайне высокой молекулярной массой (более 6,1 мегадальтона), которая оказывает мощную цитопротекцию. Чтобы проверить, производит ли она схожий эффект у других видов животных, сотрудники Университета Рочестера, Гарвардской медицинской школы, Калифорнийского университета в Лос-Анджелесе и Московского государственного университета под руководством Андрея Селуанова (Andrei Seluanov) и Веры Горбуновой (Vera Gorbunova) создали трансгенных мышей с управляемой повышенной экспрессией гена синтазы 2 гиалуроновой кислоты голого землекопа (nmrHas2). У самок и самцов таких животных наблюдалось повышенное содержание высокомолекулярной гиалуроновой кислоты в мышцах, сердце, почках и тонкой кишке; низкое — в печени и селезенке, утилизирующих ее. Тем не менее оно было ниже, чем у голых землекопов, что, вероятно, связано с более высокой активностью гиалуронидазы у мышей. Наблюдения в когортах из 80–90 животных показало, что экспрессирующие трансген nmrHas2 мыши умирают от спонтанного рака реже, чем обычные (57 против 70 процентов). Эта разница была еще заметнее у пожилых (старше 27 месяцев) животных — 49 против 83 процентов. В эксперименте по химической индукции кожного канцерогенеза нанесением 7,12-диметилбензантраценом (DMBA) и форбол-12-миристат-13-ацетатом (TPA) число папиллом на 21-й неделе от него у трансгенных мышей было почти вдвое меньше, чем у обычных. От пола животных подверженность раку не зависела. Масса тела животных из обеих групп в течение жизни не различалась. При этом экспрессирующие nmrHas2 мыши жили дольше, чем обычные — медианная продолжительность жизни у них была на 4,4 процента, а максимальная — на 12,2 процента больше. У животных женского пола сильнее различалась медианная продолжительность жизни (на девять процентов), а мужского — максимальная (на 16 процентов). Оценка эпигенетического возраста по паттернам метилирования ДНК в печени в возрасте 24 месяцев показала, что у трансгенных мышей он примерно на 0,2 года меньше хронологического. Животные из основной группы жили не только дольше жили, но и дольше оставались здоровыми. У них медленнее, чем в контрольной группе, возрастал интегральный индекс немощности (frailty index), который рассчитывается по 31 физиологическому показателю, и они в пожилом возрасте сохраняли подвижность и координацию движений в тесте на ротароде. Кроме того, у трансгенных самок замедлялось развитие остеопороза. Анализ транскриптомов различных органов и тканей экспрессирующих nmrHas2 пожилых мышей выявил особенности, присущие молодым животным, и пониженный уровень воспаления, связанного с возрастом. Молекулярные исследования показали, что высокомолекулярная гиалуроновая кислота производит противовоспалительные и иммунорегулирующие эффекты, а также предохраняет клетки от окислительного стресса. Кроме того, она стимулирует барьерную функцию кишечного эпителия, сохраняет стволовые клетки кишечника и поддерживает оптимальный состав кишечной микробиоты, что дополнительно способствует снижению возрастного воспаления. Таким образом, высокомолекулярная гиалуроновая кислота, произведенная трансгеном nmrHas2, продлила жизнь мышей и сохранила их здоровье в пожилом возрасте, подавляя возрастные воспалительные реакции. Это значит, что эволюционные адаптации долгоживущих животных, таких как голый землекоп, можно искусственно воспроизвести у других видов — возможно, и у человека — с пользой для их здоровья. Также полученные результаты указывают на потенциал клинического применения высокомолекулярной гиалуроновой кислоты для лечения возрастных воспалительных заболеваний кишечника и других органов, заключают авторы работы. В 2016 году исследователи из Великобритании, Германии и ЮАР выяснили, что низкая болевая чувствительность голых землекопов связана с мутацией гена одного из рецепторов воспринимающих боль нейронов. Годом позже американские, немецкие, британские и южноафриканские ученые показали, что эти животные могут долго обходиться без кислорода — в эксперименте они выжили 18 минут в атмосфере чистого азота, после чего восстановили аэробный метаболизм.