Физики исследовали зависимость процессов многофотонной ионизации атомов лития от направления круговой поляризации и его интенсивности. Для этого они поместили охлажденные атомы в оптическую ловушку и облучили их мощным лазерным импульсом. Ученые обнаружили дихроизм в спектрах рассеянных электронов, который был объяснен хиральной асимметрией системы «атом+поле». Результаты опубликованы Physical Review Letters, а также в виде препринта на arxiv.org.
Дихроизмом называется свойство объектов по-разному взаимодействовать со светом разных поляризаций, а круговым дихроизмом называется ситуация, когда речь идет о круговой (циркулярной) поляризации. Обычно он ассоциируется с хиральными молекулами, однако в атомах круговой дихроизм может проявляться гораздо сильнее. Для этого атом должен находиться в поляризованном состоянии, то есть в таком состоянии, при котором его орбитальный момент максимально, насколько это позволяет квантовая механика, ориентирован вдоль оси падающего на него пучка света. И хотя сами по себе такие атомы симметричны относительно отражений, их взаимодействие со светом круговой поляризации может быть асимметричным (в этом случае говорят про «оптически наведенную хиральность»).
Помимо того факта, что поляризованные атомы сильнее, чем молекулы, взаимодействуют со светом, их легче описывать теоретически. Все это делает атомные системы удобным объектом для исследования круговой асимметрии при взаимодействии вещества с излучением. Одним из способов детектирования такой асимметрии стала ионизация атомов с последующим измерением импульсов разлетающихся электронов. Предполагается, что круговой дихроизм должен проявлять себя в смещении пиков в электронных спектрах, однако до недавнего времени на практике обнаружить такое смещение не удавалось.
Американские физики при участии Дэниела Фишера (D. Fischer) продемонстрировали ионизационную схему, при которой сдвиг в фотоэлектронных спектрах достигает 40 процентов от энергии пика. Для этого авторы поместили охлажденное до милликельвина облако атомов лития в оптическую ловушку, чей лазер был лишь слегка отстроен от резонанса на переходе 2s — 2p, которому соответствует длина волны 671 нанометр. При этом, как утверждают авторы, 93 процента возбужденных атомов оказываются в поляризованном состоянии. После этого физики облучали систему короткими лазерными импульсами разной поляризации с длиной волны 665 нанометров, длительностью 65 фемтосекунд и пиковой мощностью 1012 ватт на квадратный сантиметр. Облучение приводило к разлету ионов и электронов, чьи характеристики измерялись с помощью метода ионной импульсной спектроскопии с холодной мишенью.
Параллельно ученые построили модель процессов, происходящих в атомах, которая была обсчитана с помощью численного решения уравнения Шрёдингера. В рамках ее показано, что многофотонная ионизация в рассматриваемой схеме может проходить тремя путями. В первом случае происходит отрыв электрона из основного 2s состояния с помощью трех фотонов. При этом электрон оказывается в состоянии (l, m) = (3, 3), описываемом парой квантовых чисел — орбитальным l и магнитным m. Во втором и третьем случае рассматривается двухфотонная ионизация из поляризованного возбужденного состояния 2p с m=+1 и m=–1, соответственно. В состоянии с m=+1 направление вращения плотности электронного тока в атоме совпадает с направлением вращения вектора электрического поля в пучке, в то время как в состоянии с m=–1 они противоположны. Такая асимметрия приводит к тому, что электрон во втором случае оказывается также в состоянии (3, 3), а в третьем — в суперпозиции состояний (3, 1) и (1, 1). Эта разница и детектируется в эксперименте.
Особенность предложенной схемы состоит в том, что из трех рассматриваемых уровней только два из них, 2s и 2p (m=+1), оказываются связаны резонансным полем. Так получается из-за того, что фотоны с правой круговой поляризацией увеличивают магнитное квантовое число на единицу, и с помощью такого света невозможно возбудить атом из основного 2s состояние в возбужденное 2p (m=–1). Наличие же такой связи приводит к расщеплению уровней на дуплеты, которое тем сильнее, чем больше интенсивность света. Это, в свою очередь, расщепляет пики в энергетических электронных спектрах.
Авторы также отмечают, что предложенная схема может быть использована для создания спин-поляризованных пучков электронов, что может быть полезно для нужд спинтроники. Несмотря на то, что напрямую в работе спин электрона не измерялся и не вычислялся, ранее ими уже было показано, что описанная в работе оптическая накачка выстраивает не только орбитальные, но и спиновые моменты атомов, а потому электроны после ионизации также должны быть поляризованными.
Процессы ионизации играют важную роль в атомной и молекулярной физике. Мы уже рассказывали ранее о том, как, изучая ионизацию, физики исследуют динамику димера гелия и оценивают релятивистские модели.
Марат Хамадеев
Статистическая значимость наблюдения составила около семи стандартных отклонений
В эксперименте SND@LHC на Большом адронном коллайдере зарегистрировали мюонные нейтрино со статистической значимостью около семи стандартных отклонений. Это второй эксперимент на Большом адронном коллайдере, который сообщил о надежной регистрации нейтрино. Результаты опубликованы в журнале Physical Review Letters. Нейтрино — элементарная частица, которая обладает крайне малой массой и слабо взаимодействует с веществом. При этом она играет важную роль в физике. До недавнего времени свойства нейтрино изучали в основном в области низких или сверхвысоких энергий, и широкий диапазон от 350 гигаэлектронвольт до 10 тераэлектронвольт оставался неизученным. Наземным источником нейтрино в этом диапазоне энергий является Большой адронный коллайдер. Однако проблема заключается в том, что большая часть рождающихся в нем нейтрино летит вдоль протонного пучка — в слепой зоне основных детекторов, расположенных на коллайдере. Кроме того, из-за малого сечения взаимодействия, нейтринные события сложно выделить на фоне громадной загрузки детекторов от взаимодействий других частиц. Мы недавно писали, что с этой задачей справился эксперимент FASER, впервые зарегистрировав 153 мюонных нейтрино со статистической значимостью 16 стандартных отклонений. Физики из эксперимента SND@LHC сообщили, что им также удалось зарегистрировать мюонные нейтрино со статистической значимостью около семи стандартных отклонений. В отличие от эксперимента FASER, который регистрирует нейтрино с псевдобыстротами более 8,5, чувствительная область SND@LHC сдвинута от основной оси ускорителя, в результате чего он покрывает диапазон псевдобыстрот от 7,2 до 8,4. В этой области одним из основных источников нейтрино являются распады очарованных адронов, вклад которых в эксперименте FASER пренебрежимо мал. Детектор состоит из мюонного вето, 830-килограммовой мишени и адронного калориметра. Основная мишень поделена на пять слоев, каждый из которых включает вольфрамовую пластину, ядерную фотоэмульсию и электронный трекер. Данные с фотоэмульсий на данный момент еще обрабатываются, поэтому ученые провели анализ данных, набранных только при помощи электронных трекеров. Физики отобрали 8 событий по их геометрическому расположению в детекторе и сигнатуре, соответствующей ожидаемой от мюонных событий. При этом ожидаемый фон составил 0,086 события. Такое превышение сигнала над фоном исключает нулевую гипотезу на уровне 6,8 стандартного отклонения. Количество нейтринных событий в эксперименте оказалось больше ожидаемых 4,2 события. Однако результаты согласуются с предсказанием на основе компьютерного моделирования в рамках полученных ошибок. Большой адронный коллайдер становится новым инструментом для изучения нейтрино в пока плохо изученной области энергий. О том, какие новые технологии используют при изучении нейтрино в области низких энергий мы беседовали с Дмитрием Акимовым, представителем коллаборации COHERENT.