Статистическая значимость наблюдения составила около семи стандартных отклонений
В эксперименте SND@LHC на Большом адронном коллайдере зарегистрировали мюонные нейтрино со статистической значимостью около семи стандартных отклонений. Это второй эксперимент на Большом адронном коллайдере, который сообщил о надежной регистрации нейтрино. Результаты опубликованы в журнале Physical Review Letters.
Нейтрино — элементарная частица, которая обладает крайне малой массой и слабо взаимодействует с веществом. При этом она играет важную роль в физике. До недавнего времени свойства нейтрино изучали в основном в области низких или сверхвысоких энергий, и широкий диапазон от 350 гигаэлектронвольт до 10 тераэлектронвольт оставался неизученным.
Наземным источником нейтрино в этом диапазоне энергий является Большой адронный коллайдер. Однако проблема заключается в том, что большая часть рождающихся в нем нейтрино летит вдоль протонного пучка — в слепой зоне основных детекторов, расположенных на коллайдере. Кроме того, из-за малого сечения взаимодействия, нейтринные события сложно выделить на фоне громадной загрузки детекторов от взаимодействий других частиц. Мы недавно писали, что с этой задачей справился эксперимент FASER, впервые зарегистрировав 153 мюонных нейтрино со статистической значимостью 16 стандартных отклонений.
Физики из эксперимента SND@LHC сообщили, что им также удалось зарегистрировать мюонные нейтрино со статистической значимостью около семи стандартных отклонений. В отличие от эксперимента FASER, который регистрирует нейтрино с псевдобыстротами более 8,5, чувствительная область SND@LHC сдвинута от основной оси ускорителя, в результате чего он покрывает диапазон псевдобыстрот от 7,2 до 8,4. В этой области одним из основных источников нейтрино являются распады очарованных адронов, вклад которых в эксперименте FASER пренебрежимо мал.
Детектор состоит из мюонного вето, 830-килограммовой мишени и адронного калориметра. Основная мишень поделена на пять слоев, каждый из которых включает вольфрамовую пластину, ядерную фотоэмульсию и электронный трекер. Данные с фотоэмульсий на данный момент еще обрабатываются, поэтому ученые провели анализ данных, набранных только при помощи электронных трекеров. Физики отобрали 8 событий по их геометрическому расположению в детекторе и сигнатуре, соответствующей ожидаемой от мюонных событий. При этом ожидаемый фон составил 0,086 события. Такое превышение сигнала над фоном исключает нулевую гипотезу на уровне 6,8 стандартного отклонения.
Количество нейтринных событий в эксперименте оказалось больше ожидаемых 4,2 события. Однако результаты согласуются с предсказанием на основе компьютерного моделирования в рамках полученных ошибок.
Большой адронный коллайдер становится новым инструментом для изучения нейтрино в пока плохо изученной области энергий. О том, какие новые технологии используют при изучении нейтрино в области низких энергий мы беседовали с Дмитрием Акимовым, представителем коллаборации COHERENT.
Пока эти результаты вызывают сомнения
Физики из Южной Кореи обнаружили у апатита свинца, в котором часть атомов свинца замещена медью, сверхпроводящие свойства при комнатной температуре. Ученые утверждают, что полученный методом твердотельного синтеза материал — первый сверхпроводник при комнатной температуре и атмосферном давлении. Температура перехода разрушения сверхпроводящего состояния достигает в нем 127 градусов Цельсия, пишут исследователи в препринтах (1, 2) на arXiv.org. Впрочем, некоторые физики уже выразили сомнения в обоснованности опубликованных результатов. Сверхпроводимость — эффект, при котором у некоторых материалов электрическое сопротивление становится нулевым, — обычно наблюдается при экстремально низких температурах. Лишь в конце XX века удалось получить материалы, обладающие высокотемпературной сверхпроводимостью. Первым материалом с критической температурой (Тс) выше точки кипения азота (-195,8 градуса Цельсия) был оксид итрия-бария-меди. Только в 2010-х годах были открыты новые типы сверхпроводников, способных сохранять свои свойства при температурах, более близких к комнатной. При сверхвысоких давлениях (более миллиона атмосфер) сверхпроводящие свойства возникают и у гидридов многих элементов, например, у сероводорода. Недавно физики подтвердили наличие сверхпроводимости гидрида лантана LaH10 при −23 градусах Цельсия. Уже в этом году американские ученые получили сверхпроводимость гидрида лютеция, легированного азотом, при комнатной температуре и умеренно экстремальном давлении. Впрочем, другие группы воспроизвести их результаты пока не смогли. Группа корейских физиков под руководством Ли Сукбэ (Sukbae Lee) из Центра исследований квантовой энергии обнаружила, что в материале на основе апатита свинца Pb10-xCux(PO4)6O (доля x составляет от 0,9 до 1,1) сверхпроводящие свойства наблюдаются при комнатной температуре и атмосферном давлении, то есть без необходимости сжимать образец до сотен миллионов атмосфер. Материал LK-99 получен с помощью твердотельного синтеза в герметичной трубке, вакуумированной до 1,3 × 10-6 атмосфер. Анализ полученного порошка LK-99 при помощи рентгеновской дифракции показал, что величина постоянной его кристаллической решетки на 0,48 процентов меньше, чем у апатита свинца. Ученые связали это изменение с частичным замещением атомов свинца на более компактные по размеру атомы меди. Авторы исследования полагают, что это привело к возникновению внутренних механических напряжений в кристалле, которые в конечном итоге и стали причиной сверхпроводимости. Наличие сверхпроводимости в материале ученые подтвердили, наблюдая левитацию образца в магнитном поле за счет эффекта Мейснера, а также исследуя зависимость удельного сопротивления вещества от температуры. Физики определили, что критическая температура (Тс), при которой образец LK-99 терял сверхпроводящие свойства, составляет от 104 до 127 градусов Цельсия. Ниже этой температуры ученые выделили несколько характерных участков. В диапазоне до примерно 60 градусов Цельсия удельное сопротивление практически равнялось нулю с незначительными шумовыми сигналами. При более высоких температурах наблюдался плавный рост удельного сопротивления. Авторы интерпретировали этот рост как локальные нарушения сверхпроводимости в отдельных областях поликристаллического образца. Если результаты корейских физиков подтвердятся, LK-99 может стать первым веществом со сверхпроводимостью при комнатной температуре и атмосферном давлении. Впрочем, исследования сверхпроводимости при комнатной температуре часто вызывают вопросы у научного сообщества, даже если добираются до публикации в рецензируемых журналах. Например, после проверок в 2022 году из Nature отозвали статью американских исследователей, которые нашли сверхпроводимость при 17 градусах Цельсия в смеси сероводорода, метана и водорода. Технические вопросы, из-за которых отозвали статью о сверхпроводимости углеродистого сероводорода, возникли и к этой работе. Так, сомнения в обоснованности выводов корейских ученых высказал профессор химического факультета МГУ Евгений Антипов, который вместе с Сергеем Путилиным открыл в 1993 году новое семейство ртутьсодержащих сверхпроводящих купратов. Один из них — HgBa2Ca2Cu3O8+x — на настоящий момент имеет рекордную подтвержденную на данный момент критическую температуру, −138 градусов Цельсия. В разговоре с N + 1 химик прокомментировал открытие коллег: «Я не думаю, что эта статья выйдет в каком-либо серьезном журнале, потому что она не отвечает принятым стандартам. У меня вызывает большие сомнения возможность реализации сверхпроводимости в соединении с такой формулой. Это оксофосфат двухвалентного свинца, а двухвалентный свинец отличается тем, что у него свободные электроны локализованы, они не могут переходить в зону проводимости — а значит они будут локализованы на катионах свинца». Вопросы у Антипова вызвала и возможность замещения двухвалентного свинца на двухвалентную медь в том синтезе, который проводили корейские ученые: «Представленные данные не убеждают в возможности такого замещения, так как в образце присутствует примесь сульфида меди Cu2S. С точки зрения кристаллохимии это выглядит не очень обоснованно, а с точки зрения эксперимента — они получили образец с примесями, при этом примеси там много. Поэтому говорить, что медь находится в позиции свинца, когда она присутствует в виде примесей — не обосновано». Физики продолжают изучать различные вещества и способы достичь высокотемпературной сверхпроводимости. Например, ранее мы писали, как сверхпроводимость ищут даже в радиоактивных веществах. О том как механическое напряжение помогает получить состояние сверхпроводимости в графене читайте в нашем материале «Тонко закручено».