Британским физикам удалось снизить уровень затухания сигнала в оптических волокнах с полой сердцевиной. Для длин волн 1064 и 850 нанометров значения потерь оказались сравнимы со стандартными, а на длине волны 660 нанометров полые волокна превзошли существующие аналоги. Таких результатов авторам удалось добиться благодаря использованию полых трубок внутри сердцевины и правильно подобранной геометрии поперечного сечения. Работа опубликована в Nature Communications.
Несмотря на то, что реальные потери сигнала в оптоволокне близки к теоретическому пределу, у него все еще есть ряд недостатков. Например, хроматическая дисперсия в волокне приводит к расширению световых импульсов во времени, из-за чего идущие подряд импульсы могут накладываться друг на друга. Это связано с тем, что спектр импульса состоит из набора немного отличающихся длин волн. Волны разной длины распространяются по световоду-волокну с разной скоростью, и в итоге они приходят в одну и ту же точку в разное время. Чем длиннее волокно, тем сильнее будет проявляться этот эффект. Кроме того, в сердцевине волокна могут возникать нелинейные эффекты, например, четырехволновое смешение, что может приводить к нежелательному искажению спектра сигнала.
Борьба с нежелательными эффектами в рамках существующих технологий довольно ограниченна, поэтому к решению проблем применяют новые подходы, а также используют и новые виды волокон. Одно из таких направлений — использование волокон с полой сердцевиной вместо привычного кварцевого стекла. Среди существенных плюсов их использования — отсутствие видимой хроматической дисперсии и нелинейностей, а также высокая критическая мощность (максимальная мощность, которую можно передавать по волокну без его повреждения). Однако потери в таких волокнах до недавнего времени значительно превышали аналогичные значения для стандартных волокон.
Если причина потерь сигнала в кварцевых волокнах заключается в рэлеевском рассеянии (фотоны сталкиваются с атомами, возбуждают их, а те в свою очередь излучают на той же длине волны, но уже во все стороны), то для волокон с полой сердцевиной критичными становятся микроизгибы и перетекание сигнала из сердцевины в оболочку. Для борьбы со вторым эффектом используют дополнительные полые трубки внутри волокна: это позволяет лучше локализовать пучок в центре волокна. Группа физиков из Саутгемптонского университета во главе с Франческо Полетти (Francesco Poletti) предположила, что именно их можно использовать в волокне с полой сердцевиной, чтобы добиться минимальной потери сигнала.
Авторы изготовили три типа волокон для разных длин волн: 660 нанометров, 850 нанометров и 1060 нанометров. При расчете диаметра сердцевин для каждого волокна физики учитывали соотношение длины волны излучения с толщиной оболочки и размером внутренних полых трубок. Кроме этого, им удалось сделать волокна с размером сердцевины в два раза больше, чем у кварцевых волокон. При этом такой волновод все еще поддерживает лишь одну поперечную моду, что позволяет избежать дополнительных нежелательных эффектов. Увеличение диаметра сердцевины делает воздушные волокна привлекательными для применений, где необходимо комбинировать объемную и волоконную оптику.
В инфракрасном диапазоне волокна с полой сердцевиной сравнимы с кварцевым стеклом, а на длине волны 660 нанометров даже превосходят их. Помимо этого, у всех трех типов воздушных волокон широкая полоса пропускания, то есть в них с одинаковыми потерями могут распространяться не только указанные длины волн, но и отличающиеся от них на 40-50 нанометров.
Итоговые значения потерь оказались равными 2,85 децибела на километр для 660 нанометров, 1,45 для 850 нанометров и 0,51 для 1064 нанометров. Физики планируют уменьшить эти значения в своих будущих работах за счет модификации структуры волокна и использования других материалов в качестве оболочки. Они уже провели моделирование волокна на 850 нанометров с усовершенствованной структурой и предсказывают значение потерь в нем не выше 0,3 децибела на километр.
Помимо известных применений оптоволокон в коммуникациях, квантовых технологиях и фотонике, ученые находят менее очевидные, но не менее интересные. Так, американские и итальянские инженеры предложили простой метод регистрации деформации с помощью соприкасающихся волокон, исследователи из Стэнфордского университета создали и протестировали систему обнаружения сейсмических волн с помощью оптоволокна, а китайские ученые превратили оптоволокно в датчик движения для носимой электроники.
Оксана Борзенкова
Для этого физики упрятали почти четыре тонны жидкого ксенона под гору
Физики из коллаборации PandaX поделились результатами поиска следов электромагнитного взаимодействия обычной и темной материй. Для этого они искали отклонения в числе фотонов, рожденных в 3,7 тонны жидкого ксенона, от модельного предсказания. Отрицательный результат позволил наложить новые ограничения на все типы электромагнитных свойств гипотетических частиц. Исследование опубликовано в Nature. Поиск частиц темной материи — важнейшая задача, над которой физики и астрономы бьются уже почти век. Ее существование доказывают наблюдения за движением галактик и реликтовым излучением, но, несмотря на это, ученые до сих пор не понимают, из чего она состоит. Подробнее про темную материю читайте в материале «Невидимый цемент Вселенной». Среди прочего физики спорят, участвуют ли частицы темной материи в электромагнитном взаимодействии. Само определение «темная» подразумевает отрицательный ответ, однако, это может лишь значить, что такое взаимодействие слишком слабое, чтобы его могли зафиксировать общие наблюдения и эксперименты. Темная материя может состоять из миллизаряженных частиц или частиц с неточечным зарядом, либо частиц с малым электрическими или магнитными дипольными моментами, анапольными моментами и так далее. Поиск следов такого взаимодействия ведется на самых различных установках. Среди прочего, этим заняты физики из коллаборации PandaX-4T, работающие в зале B2 Китайской подземной лаборатории Цзиньпин. Ученые исследуют гипотетический процесс, при котором частица темной материи обменивается фотоном с ядром вещества. Модели предсказывают, что его итогом должно стать излучение, испущенное ускоренным ядром, и излучение, испущенное электронами, оторвавшимися от ядра. Чтобы отыскать такие пары сигналов, физики наполняли свой детектор 3,7 тонны жидкого ксенона, окруженного с двух сторон массивами фотоумножителей. При анализе данных, собранных за 86 дней измерений, ученые учитывали множество фоновых процессов: бета-распады прочих ядер, естественную радиоактивность материалов детектора, влияние солнечных нейтрино и так далее. В результате оказалось, что учета фоновых процессов достаточно, чтобы объяснить происхождение более тысячи событий, зарегистрированных установкой. Результат эксперимента накладывает ограничения на известные электромагнитные модели частиц темной материи в диапазоне масс от 20 до 40 гигаэлектронвольт. Так, из него следует, что зарядовый радиус этих частиц не превышает 1,9 × 10-10 фемтометра, миллизаряд — 1,9 × 10-10 заряда электрона, а электрический и дипольный моменты — 1,2 × 10-23 заряда электрона на сантиметр и 4,8 × 10-10 магнетона Бора, соответственно. Ограничению подвергся также анапольный момент: 1,6 × 10-33 квадратного сантиметра, что почти в три раза меньше, чем предел, полученных в предыдущем исследовании. В качестве иллюстрации авторы сравнили свои ограничения с таковыми для других распространенных заряженный частиц: нейтрона и нейтрино, полученными другими группами. Предел для зарядового радиуса темной частицы оказался на четыре порядка строже, чем у нейтрино, пределы электрического дипольного момента и анапольного момента заняли промежуточное положение между таковыми для нейтрона и нейтрино, а предел магнитного момента оказался на один порядок слабее нейтринного. Ранее мы писали про то, как предыдущая версия детектора PandaX-4T — PandaX-II, — наполненная 0,57 тонны жидкого ксенона, помогла ограничить самодействующую темную материю.