Для этого физики упрятали почти четыре тонны жидкого ксенона под гору
Физики из коллаборации PandaX поделились результатами поиска следов электромагнитного взаимодействия обычной и темной материй. Для этого они искали отклонения в числе фотонов, рожденных в 3,7 тонны жидкого ксенона, от модельного предсказания. Отрицательный результат позволил наложить новые ограничения на все типы электромагнитных свойств гипотетических частиц. Исследование опубликовано в Nature.
Поиск частиц темной материи — важнейшая задача, над которой физики и астрономы бьются уже почти век. Ее существование доказывают наблюдения за движением галактик и реликтовым излучением, но, несмотря на это, ученые до сих пор не понимают, из чего она состоит. Подробнее про темную материю читайте в материале «Невидимый цемент Вселенной».
Среди прочего физики спорят, участвуют ли частицы темной материи в электромагнитном взаимодействии. Само определение «темная» подразумевает отрицательный ответ, однако, это может лишь значить, что такое взаимодействие слишком слабое, чтобы его могли зафиксировать общие наблюдения и эксперименты. Темная материя может состоять из миллизаряженных частиц или частиц с неточечным зарядом, либо частиц с малым электрическими или магнитными дипольными моментами, анапольными моментами и так далее.
Поиск следов такого взаимодействия ведется на самых различных установках. Среди прочего, этим заняты физики из коллаборации PandaX-4T, работающие в зале B2 Китайской подземной лаборатории Цзиньпин. Ученые исследуют гипотетический процесс, при котором частица темной материи обменивается фотоном с ядром вещества. Модели предсказывают, что его итогом должно стать излучение, испущенное ускоренным ядром, и излучение, испущенное электронами, оторвавшимися от ядра.
Чтобы отыскать такие пары сигналов, физики наполняли свой детектор 3,7 тонны жидкого ксенона, окруженного с двух сторон массивами фотоумножителей. При анализе данных, собранных за 86 дней измерений, ученые учитывали множество фоновых процессов: бета-распады прочих ядер, естественную радиоактивность материалов детектора, влияние солнечных нейтрино и так далее. В результате оказалось, что учета фоновых процессов достаточно, чтобы объяснить происхождение более тысячи событий, зарегистрированных установкой.
Результат эксперимента накладывает ограничения на известные электромагнитные модели частиц темной материи в диапазоне масс от 20 до 40 гигаэлектронвольт. Так, из него следует, что зарядовый радиус этих частиц не превышает 1,9 × 10-10 фемтометра, миллизаряд — 1,9 × 10-10 заряда электрона, а электрический и дипольный моменты — 1,2 × 10-23 заряда электрона на сантиметр и 4,8 × 10-10 магнетона Бора, соответственно. Ограничению подвергся также анапольный момент: 1,6 × 10-33 квадратного сантиметра, что почти в три раза меньше, чем предел, полученных в предыдущем исследовании.
В качестве иллюстрации авторы сравнили свои ограничения с таковыми для других распространенных заряженный частиц: нейтрона и нейтрино, полученными другими группами. Предел для зарядового радиуса темной частицы оказался на четыре порядка строже, чем у нейтрино, пределы электрического дипольного момента и анапольного момента заняли промежуточное положение между таковыми для нейтрона и нейтрино, а предел магнитного момента оказался на один порядок слабее нейтринного.
Ранее мы писали про то, как предыдущая версия детектора PandaX-4T — PandaX-II, — наполненная 0,57 тонны жидкого ксенона, помогла ограничить самодействующую темную материю.
Группа PandaX-II рассмотрела модель самодействующей темной материи (SIDM) и установила ограничения на массу переносчика взаимодействия и массу вимпов, используя данные детектора PandaX-II, который не зарегистрировал ни одного кандидата на частицу темной материи за 155 дней наблюдений. Это первая экспериментальная проверка модели SIDM с помощью непосредственного эксперимента. Статья опубликована в Physical Review Letters и находится в свободном доступе.