Физики объяснили появление параллельных бороздок на известняковых склонах

Adrien Gúerin et al. / Physical Review Letters, 2020
Французские физики установили, что желобковые карры — периодические параллельные борозды на известняковых склонах — образуются благодаря стеканию тонких слоев воды, в которых развивается гидродинамическая неустойчивость. Из-за нее растворение поверхности минерала происходит с разной скоростью в разных точках склона, что в конечном итоге приводит к появлению вертикальных канавок шириной в несколько десятков сантиметров, пишут ученые в Physical Review Letters.
Под действием дождя на известняковых склонах часто образуются желобковые карры — вертикальные бороздки шириной в несколько десятков сантиметров. Водная эрозия ведет к медленному растворению известняка и других водорастворимых минералов, например гипса или каменной соли: при контакте с водой ионы переходят в раствор и уносятся потоком, оставляя углубления на изначально плоской поверхности камня.
Для объяснения этого эффекта французские гидродинамики из Университета Париж Дидро под руководством Майкла Бераню (Michael Berhanu) определили, с какой скоростью на наклонной плоской поверхности водорастворимого минерала образуются бороздки и что с ними происходит с течением времени. Ученые провели несколько экспериментов, в которых тонкая пленка воды постоянной толщины стекала по наклонной полированной поверхности гипсового блока шириной 10 сантиметров и длиной 20 сантиметров. Угол наклона поверхности авторы исследования варьировали в диапазоне от 25 до 66 градусов, а максимальную скорость жидкости — от 0,36 до 0,84 метра в секунду.
Через 25 часов, достигнув примерно 15 сантиметров в ширину, бороздки перестают расти. Ученые связали время прекращения роста с размером образца минерала: именно через такое время поверхность полностью покрывается канавками, и длина корреляции становится равной размеру образца. Авторы работы выяснили, что глубина и ширина борозд линейно растут с течением времени. Кроме того, оказалось, что и среднее расстояние между углублениями одинаково по всей поверхности и тоже растет линейно.
Ученые предполагают два возможных механизма. Первый связан с постепенным развитием неустойчивости на микрошероховатостях поверхности в поле силы тяжести. Альтернативный механизм — чисто гидродинамический и не связанный с шероховатостью. Если изначально скорость потока распределена неоднородно, то это приводит к неоднородности скорости растворения минерала и развитию периодических структур в потоке, наподобие турбулентных вихрей. Подобные гидродинамические структуры для тонких слоев воды, однако, раньше не наблюдались.
Предложенные гипотезы ученые также подтвердили теоретическими оценками для течения тонкого слоя воды в условиях диффузии и адвекции растворенной соли и изменяющейся геометрии поверхности. Авторы работы отмечают, что в природных условиях важным фактором могут оказаться отдельные струи и миллиметровые капли, вызывающие локальные турбулентные течения. Тем не менее, полученные результаты должны хорошо описывать ранние стадии образования желобковых карр.
Исследование геометрических узоров, которые возникают в горных породах или сыпучих средах под действием воды и атмосферы, часто становится источником информации об их эволюции. Например, исследование формы марсианских дюн показало, что Марс потерял большую часть своей атмосферы еще на ранних этапах своей истории. А в результате изучения характерных извилистых оврагов на поверхности Марса ученые выяснили, что к их образованию, вероятно, привела не вода, а сублимация углекислого газа.
Александр Дубов