Сверхпроводящий магнит для одного из двух главных детекторов российского коллайдера NICA — детектора MPD — доставили на место работы, сообщил N+1 представитель Объединенного института ядерных исследований, где строят коллайдер. Стальной вакуумный цилиндрический криостат диаметром более пяти метров со сверхпроводящим соленоидом внутри больше месяца везли морем из Италии, потом на барже по рекам России. Как ожидается, детектор будет собран и готов к работе в 2022 году.
Коллайдер NICA (Nuclotron-based Ion Collider fAcility) заложили в Объединенном институте ядерных исследований в Дубне в 2016 году. В ускорителе будут сталкиваться не протоны, как в Большом адронном коллайдере, а пучки тяжелых ионов. Главная задача установки — исследование кварк-глюонной плазмы, экстремального состояния вещества, где кварки и глюоны, из которых состоят протоны и нейтроны, могут находиться в свободном состоянии. Как предполагают ученые, кварк-глюонная плазма существовала в первые мгновения после Большого взрыва. Коллайдер строится на базе существующего сверхпроводящего ускорителя «Нуклотрон», который станет «первой ступенью» будущей установки.
В большом кольце коллайдера предусмотрено две точки, где летящие в противоположные стороны тяжелые ядра будут сталкиваться, в них будут установлены два главных детектора MPD (MultiPurpose Detector — «многоцелевой детектор») и SPD (Spin Physics Detector — «детектор для изучения спиновой физики»). К настоящему моменту уже построены экспериментальные залы для обоих детекторов и начато строительство детектора MPD.
В середине сентября итальянская компания ASG Superconductors закончила строительство главного элемента детектора MPD — криостата (стального вакуумного сосуда) со сверхпроводящим соленоидом внутри. Сверхпроводящий магнит будет работать при температуре жидкого гелия — около четырех кельвинов, его главная задача — обеспечить однородное магнитное поле, ориентированное точно по оси детектора MPD. Магнитные силовые линии внутри детектора должны быть идеально «ровными» (поперечная компонента магнитного поля не должна превышать тысячных долей осевой): только так можно обеспечить достаточную точность элементов, которые будут фиксировать частицы, возникающие при столкновении тяжелых ионов.
На постройку криостата ушло несколько лет: контракт с ОИЯИ был подписан еще в 2016 году. 18 сентября цилиндр больше пяти метров в диаметре и длиной восемь метров, заключенный в специальный «саркофаг» прибыл в порт Генуи. 25 октября корабль с саркофагом прибыл в петербургский порт «Бронка», где его перегрузили на баржу. Затем криостат доставили по Неве через Ладожское, Онежское и Белое озеро в Рыбинское водохранилище, а затем по Волге до реки Дубна. В Дубну саркофаг прибыл 5 ноября, где его перегрузили на девятиосную платформу.
Сегодня утром платформа со 120-тонным саркофагом отправилась на площадку ОИЯИ, расстояние до которой от порта — около трех километров. Высота саркофага — около семи метров, поэтому пришлось временно отключить две высоковольтные линии, которые питают часть Дубны.
Саркофаг приехал на территорию ОИЯИ, затем его установят на специальные опоры в экспериментальном зале детектора MPD, снимут с платформы. Затем, в присутствии итальянских специалистов его уложат в специальное ярмо, которое уже наполовину построено.
Хотя строительство коллайдера NICA еще не закончено, некоторые эксперименты на нем уже идут — еще в 2018 году был начат сбор данных по проекту Baryonic Matter at Nuclotron (BM@N). Более подробно об истории и задачах российского коллайдера читайте в нашем материале «Маленький взрыв».
Сергей Кузнецов
Устройство необходимо для разгона электронов в линейном ускорителе
Ученые из Института ядерной физики имени Будкера СО РАН создали ключевой элемент будущего источника синхротронного излучения СКИФ — клистрон, устройство, которое будет обеспечивать линейный ускоритель СКИФа током высокой мощности и сверхвысокой частоты, сообщили пресс-службы института и Минобрнауки РФ. Разработка стала вынужденным шагом: ученые планировали закупить клистроны в Японии, но из-за санкций фирма-подрядчик разорвала контракт. Проект «Сибирского кольцевого источника фотонов» (СКИФ) был утвержден в октябре 2019 года. Предполагается, что он будет генерировать синхротронное излучение с энергией фотонов от 1 до 100 килоэлектронвольт, которое будет использоваться для высокоточного рентгеноструктурного анализа, то изучения характера рассеяния излучения в толще образца. Такого рода «просвечивание» необходимо для многих задач в физике твердого тела, для разработки новых материалов, биомедицинских исследований. Подробнее об этом мы писали в материале «Больше синхротронов». Первый элемент СКИФа — линейный ускоритель (линак), который должен будет выдавать поток электронов с энергиями в 200 мегаэлектронвольт. Частицы разгоняются в нем благодаря переменным электрическим полям высокой частоты в СВЧ-резонаторах. В свою очередь, для питания СВЧ-резонаторов нужен электрический ток сверхвысокой частоты. Устройство, которое для этого предназначено, называется клистроном. В апреле 2023 года физики ИЯФа проверили в действии «первую ступень» линака, разогнав в нем электроны до энергии 30 мегаэлектронвольт. Однако, как пояснил N + 1 завлабораторией ИЯФ Алексей Левичев, в этом эксперименте использовался клистрон японской фирмы Canon, который институт успел получить до введения санкций. По его словам, для полноценной работы линака требуется четыре клистрона — три работающих и один резервный. Поскольку клистроны с нужными параметрами выпускают только в США, Франции и Японии, физикам пришлось создавать устройство самостоятельно. Клистрон представляет собой разновидность электронной лампы. В нем есть катод, где формируется поток электронов. Затем этот поток ускоряется и попадает во входной резонатор, где под действием электрического поля он становится дискретным — разбивается на сгустки, которые, в свою очередь, наводят ток сверхвысокой частоты в выходном резонаторе. Затем электроны «ловит» коллектор и цикл повторяется. Таким образом из непрерывного тока получают ток с частотой колебаний около 3 гигагерц. При испытаниях клистрона, созданного в ИЯФе была получена мощность в 50 мегаватт. По словам, директора ИЯФ Павла Логачева, создать собственный клистрон устройство они смогли благодаря благодаря тому, что Национальная ускорительная лаборатория SLAC подарила институту клистрон, и физики научились с ним работать. По его мнению, эта технология в дальнейшем будет востребована для других ускорительных установок в России — для синхротрона, источника комптоновского излучения в Сарове, источника нейтронов в Дубне. По словам Левичева, проект линейного ускорителя разрабатывался под параметры японского клистрона, поэтому собственная их установка в максимально возможной степени соответствует «исходнику». Однако соответствие все же не стопроцентное, поэтому, вероятнее всего, три сибирских клистрона будут основными, а японскому останется роль резервного. Испытания линака со всеми тремя клистронами и на проектной энергии в 200 мегаэлектронвольт сейчас планируются на лето 2024 года, добавил Левичев. Раньше мы рассказывали, как японским ученым удалось увидеть с помощью синхротрона двухщелевую самоинтерференцию одиночных электронов во времени.