Американские компании Giumarra и Reliable Robotics провели испытания конвертированного в грузовой беспилотный летательный аппарат легкий самолет Cessna 172. Как пишет Aviation Week, во время испытаний с помощью аппарата разработчики провели быструю доставку фруктов. Испытания состоялись еще в начале августа 2020 года, однако о них разработчики сообщили только сейчас.
Сегодня множество компаний в мире занимаются исследованиями в области доставки почты и грузов с помощью беспилотников. Считается, что такие аппараты позволят быстро и относительно дешево перевозить грузы как в рамках коммерческой эксплуатации, так и в рамках спасательных операций. При этом одни компании занимаются созданием грузовых беспилотников с нуля, в то время как другие рассматривают возможность конвертации пилотируемых самолетов в беспилотные аппараты.
Во время испытаний, проведенных Giumarra и Reliable Robotics, для доставки фруктов с фермы использовались два самолета. Сперва груз персиков перевез пилотируемый грузовой самолет Cessna 208 Caravan. Затем по тому же маршруту пролетел конвертированный в беспилотник легкий самолет Cessna 172. Аппарат полностью автоматически взлетел, пролетел по маршруту и приземлился в аэропорту назначения.
В полете в кабине пилота находился летчик-испытатель, готовый перехватить управление в случае нештатной ситуации. Кроме того, полет беспилотника контролировал оператор. По итогам испытаний, разработчики заявили, что благодаря грузовым беспилотникам срок доставки фруктов с фермы на прилавки магазинов можно уменьшить с нынешних семи суток до 24 — 48 часов. Благодаря этому, удастся уменьшить объемы испортившихся во время транспортировки фруктов.
В настоящее время Reliable Robotics занимается созданием беспилотной версии самолета Cessna 208. После испытаний этот самолет планируется сертифицировать для беспилотных грузовых перевозок.
В августе 2020 года американская компания Xwing конвертировала пассажирский самолет Cessna 208B Grand Caravan в грузовой беспилотник, который планируется использовать для доставки посылок и товаров на средние расстояния. Разработчики уже провели 70 испытательных полетов самолета в полностью беспилотном режиме, начиная взлетом и заканчивая посадкой.
Василий Сычёв
Алгоритм уменьшает время простоя на 78 процентов
Инженеры из Японии создали алгоритм машинного обучения, который автоматически стимулирует таракана-киборга больше двигаться и не позволяет ему долго оставаться в одном месте. Движение таракана контролируется с помощью электроимпульсов, генерируемых рюкзачком с системой дистанционного управления. Алгоритм увеличил на 70 процентов среднюю дистанцию, пройденную киборгом, и снизил время простоя таракана на 78 процентов. Статья опубликована в Cyborg and Bionic Systems. Миниатюрные роботы могут пригодиться в самых разных сферах: от ремонта авиационных двигателей до поиска выживших под завалами. Однако из-за недостаточной развитости компактной компонентной базы, в особенности актуаторов и источников питания, это все еще сложная инженерная задача, и большинство проектов остаются на уровне лабораторных прототипов. Одно из альтернативных решений состоит в использовании живых организмов, например, тараканов или даже летающих насекомых, которые уже обладают способностью к эффективному передвижению. В их организм внедряют электроды, через которые подключаются электронные модули, контролирующие перемещения насекомого за счет электростимуляции. Однако насекомые-киборги не полностью контролируются электронными системами. Они сохраняют свои особенности поведения, которые могут ограничивать их перемещение. Например, мадагаскарские свистящие тараканы, которые часто используются в экспериментах, склонны к снижению активности в ярко освещенных областях и при недостаточно высокой температуре. Кроме того, они предпочитают бегать вдоль стен, а не по открытым пространствам. Это приводит к сложностям в использовании насекомых-киборгов и требует оптимизации стимулирующих сигналов управления. Группа инженеров под руководством Кейсуке Морисима (Keisuke Morishima) из Университета Осаки внедрила в систему управления тараканом-киборгом алгоритм машинного обучения, который позволяет автоматически стимулировать передвижение насекомого, чтобы оно не оставалось на одном месте. Так же, как и предыдущие исследователи, инженеры использовали особь мадагаскарского шипящего таракана из-за его больших размеров, достигающих семи сантиметров. Для передачи стимулирующих сигналов в усикообразные органы в задней части таракана (церки) были имплантированы платиновые электроды, соединенные медными проводами с приклеенным на спину насекомого шестиграммовым рюкзачком с электронными компонентами. Данные о движении насекомого получают с помощью встроенного в рюкзак инерционного измерительного модуля, который с помощью акселерометра и гироскопа определяет текущие линейное ускорение и угловую скорость таракана. Эта информация по беспроводному каналу связи передается на персональный компьютер на вход алгоритма машинного обучения. Из данных, разбитых на окна по 1,5 секунды, извлекаются признаки, которые затем поступают на вход классификатора, определяющего двигается насекомое или нет. В случае, если таракан остается неподвижным дольше заданного времени, на его церки подаются электрические импульсы. Наиболее эффективным алгоритмом классификации в представленной задаче оказался метод опорных векторов. Для экспериментов инженеры построили арену в форме окружности, над которой разместили камеру для отслеживания реального положения насекомого. Без дополнительной электростимуляции три таракана, использованные в тестах, стремились оставаться в периферийной области у стен арены и избегали открытого пространства большую часть времени. Использование алгоритма и электростимуляции позволило снизить время простоя в среднем на 78 процентов, а время поиска пройденную дистанцию увеличить на 68 и 70 процентов соответственно. При этом среднее время электростимуляции для всех тараканов составило всего 3,4 секунды. Таким образом алгоритм позволяет снизить количество сигналов электростимуляции и тем самым предотвратить утомление животного. Ранее мы рассказывали про американских инженеров, которые разработали носимую поворотную монохромную камеру для жуков и микророботов. Благодаря ее небольшой массе, которая составляет менее четверти грамма, насекомые с ней могут свободно двигаться и балансировать.