Ученые эмпирически проверили возможность обнаружения многоклеточной жизни исходя из данных об альбедо в низком разрешении. Для этого они изучили, как в течение суток меняется альбедо безжизненного ландшафта и растительного на земном полигоне, и затем сравнили снимки разных регионов Земли из космоса. Выяснилось, что метод позволяет отличить поросшие лесом регионы от пустынных, но при сжатии изображения планеты до одного пикселя перестает работать. Статья опубликована в International Journal of Astrobiology.
Уже около десяти лет ученые получают прямые изображения экзопланет. Это очень сложно, поскольку планеты тусклы по сравнению со своими звездами, а находятся к ним относительно близко. В прошлом году астрономы впервые сфотографировали планетную систему солнцеподобной звезды.
Запланированные к запуску телескопы обладают существенно большими возможностями чем современные, и в будущем количество прямых снимков экзопланет возрастет. Однако, скорее всего, до запуска космического телескопа со сверхбольшой апертурой экзопланеты земного типа будут видны в очень низком разрешении, вплоть до одного пикселя. На таких изображениях нельзя будет разглядеть ни лесов, ни гор, и для того, чтобы проверить, есть ли там многоклеточная жизнь, потребуется прибегать к косвенным методам.
Если исходить из предпосылки, что внеземная жизнь также использует фотосинтез, то многим организмам выгодно быть высокими. Иными словами, на других планетах могут возникать деревья или похожие на них структуры. Деревья в среднем гораздо более вертикальны, чем ландшафт: меньше одного процента земной поверхности имеет уклон больше 45 градусов, в то время как средний уклон деревьев стремится к 90 градусам. Тень от пологого объекта изменяется в течение дня гораздо меньше, чем от вертикального, и сумма этих теней будет в каждый момент времени влиять альбедо планеты, то есть на то, насколько она яркая. Следовательно, яркость «лесной» планеты и пустынной будет изменяться по-разному — надо только, чтобы деревья были достаточно высокими.
Кристофер Даути (Christopher E. Doughty) из Университета Северной Аризоны и его коллеги решили на примере Земли экспериментально проверить, можно ли обнаружить по этому методу многоклеточную жизнь на планете, которая видится как один пиксель или несколько. Для проверки ученые взяли данные из двух источников. Первый — результаты работы космического аппарата POLDER, который работал в конце девяностых годов и собрал данные о яркости разных участков Земли при освещении Солнцем с разных углов. Эту информацию надо было с чем то сравнить, и для этого ученые отправились на полигон недалеко от своего университета.
Там в 60-х годах проходили тренировки астронавтов для высадки на Луну: местность вокруг вулкана Сансет покрыта пеплом, отдаленно напоминающим реголит, а для большего сходства при помощи взрывчатки образовали кратеры диаметром до двенадцати метров. Исследователи снимали этот полигон с дрона в течение нескольких дней в разное время суток, и собрали данные как и о безжизненном районе вокруг кратеров, так и о сосновых рощах.
Выяснилось, что при изменении угла освещения Солнцем районы с деревьями вокруг Сансет действительно демонстрируют более резкое изменение яркости. Ученые сочли, что если альбедо в течение дня меняется на 0,01 сильнее, чем должно у безжизненной поверхности, это можно считать признаком многоклеточной жизни. Этот признак хорошо выделяется в данных POLDER. При смене угла освещения на тридцать градусов изменение альбедо пустынных районов, таких как Сахара, оказалось равно 0,007, а густых зарослей, подобных бассейну Амазонки — 0,016. Однако, если уменьшить разрешение, и отводить один пиксель не для больших районов, а для всей планеты в целом, то надежных признаков жизни по этому методу обнаружить не получилось. Ученые считают, что дело в том, что их модель плохо учитывает вклад в альбедо облаков, воды и атмосферного рассеяния, Кроме того, данные аппарата POLDER касательно освещения с острых углов не являются достаточно надежными, и их, хоть они бы и могли помочь, не включили в расчет.
Недавно обитаемость Земли также проверили по отраженному от Луны свету. Кроме того, ученые считают, что пыль экзопланет существенно усложнит поиск на них жизни, но при этом сама по себе запыленность способствует ее зарождению.
Василий Зайцев
И уточнили массу самой субземли
Астрономы обнаружили еще два кандидата в скалистые суперземли у красного карлика GJ 367, обладающего необычной субземлей с железным ядром. Заодно ученые уточнили параметры субземли — она оказалась массивнее и меньше, чем считалось ранее. Препринт работы доступен на arXiv.org. К экзопланетам с ультракоротким периодом обращения относятся тела, чей орбитальный период составляет меньше суток. На сегодняшний день достоверно известно о существовании 132 экзопланет с ультракоротким периодом и лишь для 36 из них определены масса и радиус. Этого мало, чтобы тщательно проверить и уточнить модели формирования и эволюции таких объектов, которые могут быть скалистыми или нептуноподобными телами, либо горячими газовыми гигантами. Группа астрономов во главе с Элизой Гоффо (Elisa Goffo) из Туринского университета опубликовала результаты анализа данных новых наблюдений за системой красного карлика GJ 367 при помощи спектрографа HARPS, установленного на 3,6-метровом телескопе Европейской южной обсерватории и измерявшего колебания лучевой скорости звезды. GJ 367 обладает массой 0,45 массы Солнца, радиусом 0,45 радиуса Солнца и находится на расстоянии в 31 световой год от нашей звезды. Светило известно тем, что в 2021 году у него была обнаружена необычная субземля GJ 367b с периодом обращения 7,7 часа, которая может обладать крупным железным ядром. В результате исследователи обнаружили, что в системе есть два новых кандидата в экзопланеты, которые могут быть суперземлями и являются нетранзитными (не проходят по диску звезды). Минимальные массы GJ 367c и GJ 367d составляют 4,13 и 6,03 массы Земли, возможные радиусы — примерно 1,6 и 1,7 радиуса Земли, а орбитальные периоды — 11,5 и 34 дня соответственно. Ученые также уточнили свойства субземли GJ 367b, которая оказалась массивнее, чем считалось ранее. Масса экзопланеты составляет 0,633 массы Земли при радиусе 0,699 радиуса Земли, что дает значением объемной средней плотности в 10,2 грамм на кубический сантиметр. Такое значение плотности на 85 процентов больше средней плотности Земли и объясняется наличием более крупного, чем считалось ранее, железного ядра — по новым оценкам его радиус составляет 91 процент от радиуса планеты. Пока неясно, как именно могла образоваться такая экзопланета, однако есть гипотеза, что в прошлом GJ 367b пережила крупные столкновения с другими телами и потеряла большую часть своей мантии, а затем подверглась удалению внешних слоев под действием излучения звезды. Ранее мы рассказывали, как сплющенный сверхгорячий юпитер оказался похож по строению на Юпитер.