Астрономы получили первый в истории снимок молодой солнцеподобной звезды, вокруг которой обращаются две гигантские экзопланеты. Прямые снимки экзопланетных систем крайне редки и до сих пор астрономам не удавалось напрямую увидеть более одной планеты, обращающейся вокруг похожей на Солнце звезды. Подобные наблюдения могут помочь понять, как образовались и эволюционировали планеты Солнечной системы. Статья опубликована в The Astrophysical Journal Letters.
С момента открытия первой планеты за пределами Солнечной системы прошло почти тридцать лет, однако прямые изображения астрономы стали получать совсем недавно. На сегодняшний день существует лишь несколько десятков подобных снимков, так как с технической точки зрения это очень трудная задача, которая требует использования самых совершенных инструментов. При этом прямые наблюдения крайне удобны для изучения атмосфер экзопланет, так как они дают больше информации об их составе, и, как следствие, для оценки потенциальной обитаемости небесных тел.
С помощью VLT Европейской Южной обсерватории Александр Бон (Alexander Bohn) из Лейденского университета вместе с коллегами получил первый прямой снимок планетной системы у солнцеподобной звезды. TYC 8998-760-1, чей возраст составляет всего 17 миллионов лет, расположена примерно в 300 световых годах от Земли в созвездии Мухи. Вокруг нее вращаются два газовых гиганта, которые гораздо массивнее, чем гиганты Солнечной системы: масса внутренней планеты превосходит массу Юпитера в 14 раз, а внешней — в 6 раз. Небесные тела находятся на расстояниях примерно 160 и 320 астрономических единиц (одна астрономическая единица равна среднему расстоянию от Земли до Солнца) — гораздо дальше от своей звезды, чем Юпитер и Сатурн от Солнца.
Открытие позволяет ученым взглянуть на планетную систему, которая похожа на нашу, но находится на гораздо более ранней стадии эволюции. Дальнейшие наблюдения этой системы, в том числе и строящимся телескопом ELT, поможет выявить и взаимодействия между этими двумя молодыми планетами и проверить, образовались ли они сразу на своих нынешних орбитах или мигрировали.
Ранее ученым удалось получить первый прямой снимок зарождающейся планеты, движущейся в протопланетном диске молодой звезды, а также создать видео, которое показывает движение четырех планет вокруг молодой звезды.
Кристина Уласович
Это первый известный гидрид металлов в атмосферах экзопланет
Астрономы при помощи наземных телескопов достоверно обнаружили гидрид хрома в атмосфере горячего юпитера WASP-31b. Это первый случай подтвержденного открытия гидрида металлов в атмосферах экзопланет. Статья опубликована в журнале The Astrophysical Journal Letters. Линии гидридов и оксидов металлов используются астрофизиками при спектроскопических исследованиях атмосфер очень холодных звезд и коричневых карликов для их классификации и определения некоторых свойств — например, металличности или наличия облаков. Горячие экзогиганты могут обладать температурой, сравнимой с температурой коричневых карликов (а порой и звезд), поэтому в них тоже можно найти оксиды и гидриды металлов, которые влияют на свойства их атмосфер, например, вызывают температурную инверсию. Неоднократные поиски на горячих и теплых экзопланетах гидридов железа и хрома уже давали интересные кандидатуры, однако эти результаты основаны на спектроскопии низкого разрешения, что затрудняет достоверную идентификацию различных соединений и не позволяет сделать однозначных выводов. Группа астрономов во главе с Лаурой Флэгг (Laura Flagg) из Корнеллского университета сообщила об однозначном обнаружении гидрида хрома (CrH) в атмосфере горячего юпитера WASP-31b. Для этого ученые проанализировали данные спектроскопических наблюдений высокого разрешения, проведенных при помощи спектрографов GRACES и UVES, установленных на наземных телескопах «Джемини-Север» и VLT. Наблюдения велись в 2017 и 2022 году, во время транзитов планеты по диску звезды. Масса WASP-31b оценивается в 0,478 массы Юпитера, а радиус — в 1,549 радиуса Юпитера, она совершает один оборот вокруг своей звезды спектрального класса F5 за 3,4 дня и обладает равновесной температурой 1481 кельвин, а также очень низкой плотностью. Ранее в атмосфере экзопланеты уже был обнаружен гидрид хрома, однако тогда данные казались не до конца убедительными — статистическая значимость открытия составила 3,3 сигма. В текущем исследовании статистическая значимость обнаружения гидрида хрома составляет 5,6 сигма, что делает WASP-31b первой экзопланетой с подтвержденным наличием гидрида металла. Авторы отмечают, что текущие возможности наземной спектроскопии высокого разрешения для поисков гидридов и оксидов металлов на других экзопланетах ограничены и для новых открытий стоит использовать космические телескопы, такие как «Джеймс Уэбб», а также будущие крупные наземные телескопы следующего поколения. Ранее мы рассказывали о том, как астрономы впервые отыскали барий, самарий и тербий в атмосферах ультрагорячих юпитеров — это самые тяжелые найденные на сегодня элементы в атмосферах экзопланет.