Клетки микроглии способны регулировать активность нейронов по принципу отрицательной обратной связи — говорится в исследовании, опубликованном в журнале Nature. Этот механизм предохраняет мозг от слишком сильного возбуждения нейронов, которое ведет к припадкам. Возможность микроглии регулировать нейронную активность зависит от ее способности распознавать и расщеплять молекулы АТФ, которые нейроны выделяют при активации. Расщепленные молекулы превращаются в аденозин, который подавляет активность нейронов. Такая обратная связь может играть важную роль в защите мозга от нейродегенеративных заболеваний.
Клетки мозга млекопитающих — это не только нейроны, но и клетки глии, которые выполняют множество функций: недавние исследования показали, что глия даже участвует в восприятии боли. Среди клеток глии выделяют микроглию — один из типов иммунных клеток. Помимо борьбы с инфекциями, клетки микроглии вместе со звездчатыми клетками (астроцитами) могут поедать мертвые нейроны, что позволяет избежать воспаления в мозге.
Исследователи из Школы медицины Икана Медицинского центра Маунт-Синай под руководством Аны Бадимон (Ana Badimon) обнаружили новую функцию микроглии: регуляцию нейронной активности по принципу отрицательной обратной связи. Ученые создали мутантные нейроны, которые несли рецепторы к клозапин-N-оксиду. Так нейроны можно активировать при помощи этого вещества. Исследователи заметили, что при активации нейронов в переднем мозге мышей изменяется работа генов микроглии в стриатуме. Они проанализировали работу генов этих клеток и выявили гены, которые изменили свою активность: ими оказались гены групп подвижности и роста.
Чтобы понять, как микроглия влияет на активность нейронов, биологи «выключили» ее в мозге взрослой мыши. Оказалось, что без микроглии нейроны становятся гиперчувствительными и чаще спонтанно возбуждаются. Более того, когда исследователи специфично активировали три разные группы нейронов, у мышей без микроглии гораздо чаще наступали припадки из-за избыточной активности мозга (p⩽0.05).
Тогда исследователи провели прижизненную микроскопию клеток мозга, чтобы изучить их активность. Они записали видео работы нейронов и заметили, что они активируются синхронно. Эти и стало причиной припадков: скорее всего, клетки микроглии как бы «выстраивали в очередь» нейроны, чтобы они не работали одновременно, а без микроглии они вызывали в мозге избыточную активность.
Известно, что при активации нейроны выделяют молекулы АТФ, которые микроглия может воспринимать рецепторами P2RY12. Исследователи заблокировали эти рецепторы и показали, что они необходимы для отрицательной обратной связи в микроглии. Тогда биологи изучили каскад реакций превращений АТФ в молекулу-ингибитор аденозин и выяснили, что именно через него микроглия и регулирует активность нейронов: в ответ на выделение АТФ — признак активности нейрона, микроглия выделяет белки, которые участвуют в превращении АТФ в ингибитор аденозин.
Так американские ученые выяснили, что микроглия регулирует работу нейронов по принципу отрицательной обратной связи: в ответ на активацию способствует его превращению в ингибитор. Без микроглии в мозге наблюдается избыточная электрическая активность, что ведет к припадкам. Это исследование может быть полезным в поиске лечения нейродегенеративных заболеваний.
Недавно исследователи нашли еще один дефект в активации нейронов. В клетках с делецией 22 хромосомы, которая повышает риск развития шизофрении и расстройств аутистического спектра чаще происходит спонтанное возбуждение. Это связано с неправильной работой кальциевых каналов, которые играют ключевую роль в возбуждении этих клеток. Исследователи предложили два способа исправления ситуации.
Аня Муравьева
Исследование провели на личинках дрозофил
Японские исследователи в экспериментах с дрозофилами установили механизм влияния на нейропластичность фермента убиквитинлигазы, функции которого нарушены при синдроме Ангельмана. Как выяснилось, этот фермент в пресинаптических окончаниях аксонов отвечает за деградацию рецепторов к костному морфогенетическому белку, за счет чего устраняются ненужные синапсы в процессе развития нервной ткани. Отчет о работе опубликован в журнале Science. Синдром Ангельмана представляет собой нарушение развития, которое проявляется умственной отсталостью, двигательными нарушениями, эпилепсией, отсутствием речи и характерной внешностью. Его причиной служат врожденные дефекты фермента убиквитинлигазы Е3А (Ube3a), который присоединяет к белкам убиквитин, влияющий на их судьбу в клетке, в том числе деградацию. При синдроме Ангельмана сниженная активность Ube3a нарушает синаптическую пластичность в процессе нейроразвития, в частности элиминацию ненужных синапсов. Повышенная активность этого фермента, напротив, приводит к неустойчивости сформировавшихся синапсов и, как следствие, к расстройствам аутического спектра. Исследования постсинаптических функций Ube3a показали, что он играет роль в нейропластичности, в частности формировании дендритных шипиков. При этом, по данным иммунохимических и электронно-микроскопических исследований, в коре мозга мыши и человека этот фермент экспрессируется преимущественно пресинаптически. Учитывая высокую эволюционную консервативность Ube3a, сотрудники Токийского университета под руководством Кадзуо Эмото (Kazuo Emoto) использовали для изучения его пресинаптических функций сенсорные нейроны IV класса по ветвлению дендритов (C4da) личинок плодовой мухи дрозофилы. Число дендритов этих нейронов резко сокращается (происходит их прунинг) в первые 24 часа после образования куколки, а на последних стадиях ее развития дендриты разветвляются вновь уже по взрослому типу. Используя флуоресцентные метки различных биомаркеров нейронов, исследователи показали, что в ходе этого процесса ремоделированию подвергаются не только дендриты, но и пресинаптические окончания аксонов. Попеременно отключая разные компоненты участвующих в этих процессах молекулярных комплексов, ученые убедились, что для элиминации синапсов под действием сигнального пути гормонов линьки экдизонов необходима только Ube3a, но не куллин-1 E3-лигаза, участвующая в прунинге дендритов. Дальнейшие эксперименты с применением флуоресцентных меток и РНК-интерференции показали, что Ube3a активно транспортируется из тела нейрона в аксон двигательным белком кинезином со средней скоростью 483,8 нанометра в секунду. Создав мутантов с дефектами в различных участках Ube3a, авторы работы выяснили, что связанные с синдромом Ангельмана мутации D313V, V216G и I213T в среднем домене фермента, содержащем тандемные полярные остатки (TPRs), препятствуют его связи с кинезином и транспорту из тела нейрона в аксон. Как следствие, нарушается элиминация ненужных синапсов. Изменения в N-концевом цинк-связывающем домене AZUL и C-концевом HECT влияли на эти процессы в значительно меньшей степени. Ube3a принимает участие в убиквитинировании многих клеточных белков. Чтобы выяснить, какой из них опосредует элиминацию синапсов, авторы работы вызывали в нейронах избыточную экспрессию разных белков-мишеней Ube3a с целью насытить этот фермент и таким образом заблокировать его действие. Оказалось, что выраженные дефекты элиминации синапсов возникают при избыточной экспрессии тиквеина (Tkv) — пресинаптического рецептора к костному морфогенетическому белку (ВМР); прунинг дендритов при этом не затрагивается. Исследование нормальной экспрессии Tkv с помощью флуоресцентных меток показало, что ее уровень значительно снижается через восемь часов после начала формирования куколки. У мутантов, лишенных Ube3a, этого не происходило. Выключение гена tkv или другого компонента сигнального пути BMP — mad — восстанавливало элиминацию синапсов у таких мутантов, то есть за нее отвечает именно этот сигнальный путь. Это подтвердили, восстановив элиминацию синапсов у мутантов без Ube3a антагонистом BMP LDN193189, а также экспрессией белков Glued-DN или Dad, которые подавляют сигнальную активность Mad. Искусственное повышение пресинаптической экспрессии Ube3a в нейронах C4da вызывало массированную преждевременную элиминацию сформировавшихся синапсов и общее уменьшение синаптической передачи у личинок третьего возраста. Это происходило из-за чрезмерного подавления сигнального пути BMP. Таким образом, дефекты убиквитинлигазы Ube3a, лежащие в основе синдрома Ангельмана, приводят к избыточной активности сигнального пути BMP, вследствие чего не происходит устранение ненужных синапсов в процессе развития нервной системы. Этот сигнальный путь может послужить мишенью для разработки новых методов лечения этого синдрома, а возможно и расстройств аутического спектра, считают авторы работы. В 2020 году американские исследователи сообщили, что им удалось предотвратить развитие синдрома Ангельмана у мышей с мутацией материнской копии гена UBE3A. Для этого они с помощью системы CRISPR/Cas9 инактивировали длинную некодирующую РНК UBE3A-ATS, которая подавляет экспрессию отцовской копии UBE3A.