Физики сравнили относительное содержание фосфора — одного из ключевых элементов для жизни — в составе Солнца и 100 других звезд главной последовательности. Оказалось, что в среднем по отношению к другим звездам Солнце почти вдвое более богато фосфором — такой результат в будущих поисках потенциально обитаемых небесных тел может позволить отсеивать звездные системы, в которых содержание этого элемента недостаточно велико. Тем не менее, авторы подчеркивают, что для подобных исследований необходимо увеличивать объем выборки — нынешнего количества измерений содержания фосфора недостаточно для полноценных выводов. Работа опубликована в The Astrophysical Journal Letters.
Пригодность экзопланеты для жизни ученые оценивают из множества факторов, один из которых — химический состав небесного тела. В нем принято искать элементы и соединения, необходимые для возникновения и существования известных земных форм жизни. На сегодняшний день прямые измерения в этой области ограничиваются спектроскопией атмосферы, которую можно проводить лишь при транзитах — в случаях, когда планета заслоняет для наблюдателя фоновый источник света (например, свою звезду), либо регистрируя собственное тепловое излучение планеты.
От редактора
В изначальной версии заметки был упущен из виду второй основной способ изучать атмосферы экзопланет — инфракрасная спектроскопия.
Установить же напрямую состав поверхности далекой планеты на данный момент невозможно, поэтому его оценивают по составу ближайшей звезды (определить который можно по спектру светила): поскольку и звезда, и окружающие ее планеты формируются приблизительно одновременно из одного скопления вещества, их составы также должны примерно совпадать.
Физики из США под руководством Натали Хинке (Natalie R. Hinke) из Юго-западного исследовательского института провели сравнение состава Солнца и других звезд главной последовательности, сосредоточив внимание на содержании фосфора. На Земле у этого элемента важное биологическое значение — в том числе, входит в состав нуклеиновых кислот, выполняющих генетические функции.
Авторы воспользовались данными Hypatia Catalog, в котором содержатся измерения химического состава примерно 9400 звезд на расстояниях до 500 парсек от Солнца — среди них, однако, лишь для 100 определено содержание фосфора. Помимо фосфора ученые интересовались содержанием углерода и азота, которые тоже необходимы для земной жизни, а также кремния — породообразующего элемента, измерения которого в звездах проводятся наиболее часто. Для сравнения с составом Солнца физики вычисляли средние по выборке соотношения между парами химических элементов.
Оказалось, что для Солнца содержание углерода относительно азота практически совпало (в пределах пяти процентов) со средним показателем для звезд из каталога, в то время как содержание фосфора относительно углерода, азота и кремния — почти вдвое (на 70–80 процентов) превысило среднюю величину. Несмотря на сравнительно маленький размер выборки (всего 100 измерений на фоне девяти с половиной тысяч в одном каталоге), такой результат может указывать на то, что Солнечная система сформировалась из молекулярного облака с повышенным (относительно среднего уровня) содержанием фосфора.
Такое обстоятельство, в свою очередь, можно рассматривать как сопутствующее (или даже способствующее) возникновению жизни и использовать при поиске потенциально обитаемых небесных тел — исключать из рассмотрения планетные системы, в звездах которых мало содержание фосфора.
Авторы подчеркивают, что для серьезного исследования необходимо развивать экспериментальные техники по спектральному наблюдению фосфора и увеличивать количество измерений — это позволит надежнее подтвердить или опровергнуть качественные соображения, которые приведены в работе, и сформулировать более четкие выводы. Кроме того, по словам ученых, полезными могут оказаться наблюдения алюминия, калия и скандия: синтез этих элементов в массивных звездах частично проходит совместно с фосфором, благодаря чему можно вычислять содержание последнего.
Ранее мы рассказывали о многообещающих экспериментальных результатах, связанных с фосфором: в 2016 году астрономы нашли в области звездообразования фрагмент фосфатного остова ДНК, а в январе этого года — обнаружили окись фосфора в межзвездном облаке и комете Чурюмова — Герасименко.
Николай Мартыненко
Статистическая значимость наблюдения составила около семи стандартных отклонений
В эксперименте SND@LHC на Большом адронном коллайдере зарегистрировали мюонные нейтрино со статистической значимостью около семи стандартных отклонений. Это второй эксперимент на Большом адронном коллайдере, который сообщил о надежной регистрации нейтрино. Результаты опубликованы в журнале Physical Review Letters. Нейтрино — элементарная частица, которая обладает крайне малой массой и слабо взаимодействует с веществом. При этом она играет важную роль в физике. До недавнего времени свойства нейтрино изучали в основном в области низких или сверхвысоких энергий, и широкий диапазон от 350 гигаэлектронвольт до 10 тераэлектронвольт оставался неизученным. Наземным источником нейтрино в этом диапазоне энергий является Большой адронный коллайдер. Однако проблема заключается в том, что большая часть рождающихся в нем нейтрино летит вдоль протонного пучка — в слепой зоне основных детекторов, расположенных на коллайдере. Кроме того, из-за малого сечения взаимодействия, нейтринные события сложно выделить на фоне громадной загрузки детекторов от взаимодействий других частиц. Мы недавно писали, что с этой задачей справился эксперимент FASER, впервые зарегистрировав 153 мюонных нейтрино со статистической значимостью 16 стандартных отклонений. Физики из эксперимента SND@LHC сообщили, что им также удалось зарегистрировать мюонные нейтрино со статистической значимостью около семи стандартных отклонений. В отличие от эксперимента FASER, который регистрирует нейтрино с псевдобыстротами более 8,5, чувствительная область SND@LHC сдвинута от основной оси ускорителя, в результате чего он покрывает диапазон псевдобыстрот от 7,2 до 8,4. В этой области одним из основных источников нейтрино являются распады очарованных адронов, вклад которых в эксперименте FASER пренебрежимо мал. Детектор состоит из мюонного вето, 830-килограммовой мишени и адронного калориметра. Основная мишень поделена на пять слоев, каждый из которых включает вольфрамовую пластину, ядерную фотоэмульсию и электронный трекер. Данные с фотоэмульсий на данный момент еще обрабатываются, поэтому ученые провели анализ данных, набранных только при помощи электронных трекеров. Физики отобрали 8 событий по их геометрическому расположению в детекторе и сигнатуре, соответствующей ожидаемой от мюонных событий. При этом ожидаемый фон составил 0,086 события. Такое превышение сигнала над фоном исключает нулевую гипотезу на уровне 6,8 стандартного отклонения. Количество нейтринных событий в эксперименте оказалось больше ожидаемых 4,2 события. Однако результаты согласуются с предсказанием на основе компьютерного моделирования в рамках полученных ошибок. Большой адронный коллайдер становится новым инструментом для изучения нейтрино в пока плохо изученной области энергий. О том, какие новые технологии используют при изучении нейтрино в области низких энергий мы беседовали с Дмитрием Акимовым, представителем коллаборации COHERENT.