Физики предложили экспериментальную модель топологических изоляторов второго порядка на основе графена с наноструктурным подслоем. Такой подход позволяет управлять распределением энергетических зон в графене «удаленно» с помощью метазатвора. Разработанная система поможет в изучении квантовых нелокальных эффектов в периодически легированном графене и разработке сверхкомпактных нанофотонных волноводов и резонаторов. Работа опубликована в Advanced photonics.
Начало активному исследованию топологических изоляторов положила нобелевская премия 2016 года «за теоретические открытия топологических фазовых переходов и топологических фаз материи». Структура энергетических уровней изолятора отличается от полупроводника или проводника тем, что все его электроны находятся в валентной зоне, в то время как зона проводимости остается незаполненной. Электроны двумерных материалов в магнитном поле тоже имеют распределение по уровням, называемым уровнями Ландау. На границе раздела такой структуры и вакуума энергетические уровни выстраиваются так, что по поверхности может протекать ток. Важно, что состояния с такими энергиями являются стабильными и нечувствительными к внешним воздействиям. Подробнее о топологических изоляторах вы можете прочитать в нашем материале «Топологически защищен».
Размерность пространства, в котором протекает ток в топологических изоляторах имеет меньшую размерность, чем сам изолятор. То есть для объемных структур ток может протекать по ее поверхности или ребру, а для двухмерных — вдоль одной линии или локализоваться в какой-то точке. Группа физиков под руководством Геннадия Швеца (Gennady Shvets) из Корнеллского университета выбрала второй вариант — они изготовили фотонный кристалл на основе графена и показали наличие одномерных и нульмерных токов в нем.
Предложенная авторами структура состоит из слоя графена между двумя слоями гексагонального нитрида бора, под которыми находится проводящий слой металла с наноструктурой в виде круглых отверстий. В общем случае размер отверстий может быть двух разных диаметров, в вырожденном варианте — все отверстия имеют одинаковый диаметр и напоминают соты. Ученые меняли соотношения между диаметрами отверстий, что позволяло им контролировать энергетическую структуру уровней графена.
Наличие проводящего перфорированного подслоя позволяет создавать своеобразный энергетический ландшафт в графене. Уровень Ферми в нем повторяет структуру метазатвора — его величина меньше там, где есть отверстие в подслое. Периодичное распределение уровня Ферми графена означает, что показатель преломления в нем тоже меняется периодично. То есть проводящий наноструктурный подслой превращает графен в фотонный кристалл.
Фотонный кристалл можно рассматривать с точки зрения модели сильной связи, когда учитывается влияние только ближайших соседей. Для того чтобы выделить взаимодействующие элементы, шестиугольные структуры-соты разбивали на треугольники и рассматривали взаимодействие между ними. Существует шесть разных орбитальных состояний таких элементов — монополь, два диполя, два квадруполя и октуполь. В то время как первое и последнее состояния при низких энергиях не видны, дипольные и квадрупольные распределения плотностей зарядов на поверхности зарегистрировать реально. Именно их и наблюдали ученые при изменении параметров метазатвора. В случае, когда внутренний радиус сегмента был меньше внешнего, его энергетическая структура соответствует тривиальному топологическому домену (его зонная структура похожа на обычный изолятор), в противоположной ситуации — нетривиальному (в запрещенной зоне есть состояния, которые называются краевыми). Причем в первом случае в валентной зоне находились преимущественно диполи, а во втором — квадруполи.
Граница раздела между тривиальными и топологическими доменами и есть та прямая, вдоль которой могут перемещаться носители заряда. Для того чтобы сделать эту границу стабильной и сформировать зонную структуру таким образом, чтобы расстояние между двумя разными краевыми состояниями, было небольшим, ученым пришлось разделить эти домены стенками. Оказалось, что моды обоих направлений могут распространяться без отражений вдоль ломаной кривой с резкими углами поворота. Для создания стабильного локализованного состояния в середине, запрещенной ученым пришлось изменить радиусы отверстий метазатвора, чтобы увеличить расстояние между краевыми состояниями.
В дальнейшем авторы планируют продолжить разработки топологических изоляторов для графеновых плазмонов. Например, они предлагают использовать еще один подслой наноструктурного проводника с другой стороны от графена для того, чтобы можно было переключаться между краевыми и локализованным состояниями.
Все больше новых эффектов и явлений, связанных с топологическими изоляторами, открывают и обнаруживают физики со всего мира. Например, две группы ученых независимо друг от друга научили двумерный топологический изолятор превращаться в сверхпроводник. А немецкие физики создали структуру с фазовым переходом нового типа.
Оксана Борзенкова
Для этого потребуется собрать вместе несколько сферических слоев с магнитооптическими свойствами
Физики из ИТМО при участии нобелевского лауреата Франка Вильчека численно нашли параметры метаматериала, чей магнитооптический отклик повторяет отклик гипотетических аксионов, если бы они существовали в реальности. Работа ученых открывает дорогу к экспериментам с эмерджентной аксионной электродинамикой. Исследование опубликовано в Physical Review B. Термин «аксион» для новых гипотетических частиц ввел впервые нобелевский лауреат Франк Вильчек (Frank Wilczek), назвав их так в честь стирального порошка — он предполагал, что эти частицы помогут «очистить» квантовую хромодинамику от трудностей, связанных с нарушением CP-симметрии. Сегодня аксионы остаются одними их главных кандидатов на темную материю, и их активно ищут как по астрофизическим данным, так и в наземных экспериментах. В физике, однако, существует и другой подход к исследованию частиц или явлений, которые были предсказаны, но не обнаружены приборами. Он основан на создании особым образом спроектированных сред, элементарные возбуждения в которых (квазичастицы) ведут себя подобно предполагаемым частицам. Ярчайшим примером этого принципа можно назвать исследование майорановских частиц, которые физики активно рассматривают в качестве кандидатов для элементной базы квантовых компьютеров. Аксионоподобные возбуждения (или эмерджентные аксионы) тоже были обнаружены — их нашли в магнитных твердых телах, однако там амплитуда их сигнала довольно небольшая. Однако, в метаматериалах эта ситуация может измениться — это показали Максим Горлач (Maxim A. Gorlach) и его коллеги из ИТМО при участии самого Франка Вильчека. Их работа также посвящена поиску аксионоподобных возбуждений. Ученые обратили внимание на то, что, существуй аксионы на самом деле, они проявят себя в виде дополнительных членов в уравнении Максвелла. С другой стороны, точно такие же члены можно воспроизвести с помощью правильного дизайна среды. Авторы численно показали это на примере магнитного диполя, окруженного аксионной средой. Им удалось подобрать метаматериал, состоящий из сферических слоев магнитооптического вещества и найти параметры, при которых возбуждение поля при таких условиях эквивалентно полям с реальными аксионными эффектами. Важной особенностью проведенных расчетов стало то, что предсказанная учеными константа взаимодействия с эмерджентными аксионами оказалась не только достаточно велика, но и поддавалась управлению за счет добавления или убавления слоев — в предыдущих исследованиях такой возможности не было. В работе физиков структура продемонстрировала аксионный отклик в микроволновой и терагерцовых областях. По мнению ученых, их моделирование открывает дорогу к созданию компактных установок для проверки свойств аксионной электродинамики. Ранее мы рассказывали, что в немецком исследовательском центре DESY стартовал эксперимент ALPS II, призванный обнаружить превращение фотонов в аксионы.