Физики впервые создали два взаимодействующих временных кристалла в сверхтекучем гелии и обнаружили несвойственный такой системе эффект Джозефсона. Работа опубликована в журнале Nature Materials.
Кристаллы, системы которые повторяют свою структуру при пространственных сдвигах, хорошо изучены учеными и активно применяются в технологиях. В 2012 году Нобелевский лауреат Франк Вильчек впервые предложил концепцию «кристалла времени» (time crystal), где состояние периодически воспроизводится с течением времени. Простейшим аналогом такого кристалла мог бы быть идеальный маятник, но в простых механических системах колебания быстро затухают и поэтому временными кристаллам они не являются.
Свойство системы сохранять состояние называется когерентностью, то есть временные кристаллы теоретически могут возникать только в когерентных системах. Ярким примером таких систем является сверхтекучий конденсат Бозе — Эйнштейна, состоящий из охлажденных бозонов в когерентном состоянии. Ранее физикам удавалось создать временной кристалл в сверхтекучих газах, но создание и взаимодействие нескольких кристаллов до сих пор оставалось открытой задачей.
Физики из Великобритании, России, США и Финляндии под руководством доктора Владимира Ельцова (Vladimir Eltsov) впервые экспериментально создали два временных кристалла в одной сверхтекучей системе. Более того, ученые заставили кристаллы взаимодействовать и обнаружили необычный для временных кристаллов эффект Джозефсона.
Авторы исследовали магноны (квазичастицы спиновых возбуждений) в сверхтекучем гелии-3, охлажденном до 130 микрокельвин. Такая низкая температура, почти в 100 раз ниже температуры, при которой работает сверхпроводящих квантовый компьютер, была получена при помощи специально разработанного криостата растворения в университете Аалто.
Временные кристаллы создавались в ловушке в сверхтекучем гелии-3, которая содержала пространственно разделенные бозе-эйнштеновские конденсаты. Магноны в конденсатах и представляли собой временные кристаллы. Варьируя внешнее магнитное поле физикам удалось переместить часть магнонов из одного конденсата в другой, заставляя, таким образом, временные кристаллы взаимодействовать.
В процессе взаимодействии двух систем физики измеряли кристаллы и обнаружили колебания заселенностей в кристаллах с противоположной фазой — эффект, известный как переменный эффект Джозефсона. При этом коденсаты сохраняли свои когерентные свойства и не переставали быть временными кристаллами.
Кристаллы времени имеют большой потенциал для практического применения. Их можно использовать, например, для улучшения атомных часов и гироскопов. Также в своей работе физики предполагают, что временные кристаллы можно использовать для квантовой обработки информации, ведь они естественным образом обладают самым критичным для квантового компьютера ресурсом — когерентностью.
В 2016 году физики впервые создали кристалл времени, тогда эта работа попала на обложку Nature. А в 2018 году мы писали о том, как ученые создали первый временной кристалл в бозе-конденсате.
Михаил Перельштейн
Физикам помогла простая математическая модель
Британские теоретики попытались разобраться, почему при слишком мелком помоле эспрессо получается невкусным. Для этого они построили простую модель протекания жидкости через два канала с пористым молотым кофе. Оказалось, что слишком мелкий помол запускает механизм с положительной обратной связью, из-за которого жидкость течет только по одному из каналов. Кофе во втором канале при этом остается недоэкстрагированным. Исследование опубликовано в Physics of Fluids. Для приготовления эспрессо нужно пропускать достаточно горячую воду под большим давлением через фильтр с молотым кофе. Люди научились готовить эспрессо еще в XIX веке, и с тех пор методом проб и ошибок сложилась практика получения наилучшего вкуса кофе. Однозначно формализовать качество кофе непросто, но чаще всего специалисты ориентируются на уровень (или выход) экстракции кофе — массовую долю растворившихся в воде химических компонентов зерен. В попытках разобраться в том, какая физика стоит за приготовлением эспрессо, несколько лет назад Фостер с коллегами провели экспериментальное и численное исследование этого процесса. Ученые уделили особое внимание помолу: модель предсказывала, что, чем меньше размер зерен, тем больше экстракция. Но эксперименты показали, что так происходит лишь до определенного порога, меньше которого уровень экстракции начинает снижаться. Этот эффект известен баристам давно. Его объясняют тем фактом, что при слишком мелком помоле в таблетке с кофе пробиваются паразитные каналы, через которые вода почти полностью утекает, игнорируя остальную кофейную массу. Фостер с коллегами учли этот факт, дополнительно наложив на модель ограничение на площадь экстракции. Тем не менее, остается проблема учета этого эффекта из первых принципов. Уильям Ли (William Lee) из университета Хаддерсфилд был одним из соавторов статьи Фостера. Ранее он с коллегами уже проводил независимые вычисления, связанные варкой кофе. На этот раз целью его группы стал вопрос о том, как именно происходит неравномерная экстракция при варке методом эспрессо. Для ответа на этот вопрос, физики построили довольно простую модель просачивания жидкости через два канала с пористым веществом. За основу они взяли уравнение Козени — Кармана, выведенное для упаковки сферических частиц. Вместе с ним авторы учли тот факт, что вещество помола экстрагируется в жидкость, уменьшая объем порошка. Решая полученные дифференциальные уравнения, физики смогли качественно воспроизвести главный эффект: по мере уменьшения размера зерен выход экстракции также спадает. Динамика потоков по каждому из каналов позволила понять, почему так происходит. Оказалось, все дело в механизме положительной обратной связи: чем больше протекает воды через канал, тем больше извлекается вещества и тем больше становится его пористость, а значит тем меньше сопротивление канала. В какой-то момент поток в одном из каналов становится максимальным, а в противоположном — падает почти до нуля. Несмотря на качественное объяснение, которое дала модель, ее количественные оценки разошлись с экспериментальными данными. Этот факт авторы объяснили простотой модели. В частности, они не учли стратификацию кофейной массы, а также использовали мономодальное распределение частиц, вместо бимодального, которым обладает реальный помол. Помимо усложнения модели, физики планируют включить в нее альтернативное объяснение эффекта, связанного с мельчанием помола, который заключается в закупоривании каналов зернами. Кофе — это один из немногих продуктов и в целом аспектов человеческой деятельности, который исследует огромное количество научных дисциплин от математики до экспериментальной психологии. Подробнее об этих исследованиях читайте в серии материалов и блогов «Сварен на калькуляторе», «Кофе (не) убьет», «Чашечку кофе?», «Кофе: проклятие четырех чашек».