Японские исследователи показали, что аэробные микроорганизмы из донных отложений с юга Тихого океана способны питаться и размножаться, даже пролежав в глине на десятки метров ниже дна 101 миллион лет, сообщается в Nature Communications. На примере этих бактерий можно будет изучать эволюционные процессы, характерные для бактерий с экстремально замедленным обменом веществ, и границы возможностей жизни на Земле.
В донных отложениях на дне морей и океанов обитает множество бактерий: они составляют 12–45 процентов от общей массы микроорганизмов и примерно 0,6–2 процента от биомассы всех живых существ на планете. По всей видимости, микроорганизмы, которые обитают в донных осадках, могут довольствоваться очень малыми количествами нужных им для жизни веществ. Следы аэробных (нуждающихся в кислороде) бактерий нашли даже в глине в трещинах вулканических пород, слагающих дно Южно-Тихоокеанского круговорота. Их образцы (керны) японские ученые достали с глубин 51, 109,6, и 121,8 метров ниже дна. Однако в той работе не изучали обмен веществ найденных бактерий.
Теперь некоторые авторы предыдущей работы, в частности Юки Мороно (Yuki Morono) и его коллеги из Японского агентства науки и технологий по изучению морских недр (JAMSTEC) и Род-Айлендского университета, представили результаты культивации микроорганизмов, которых они нашли в кернах, поднятых с глубины до 74,5 метров ниже дна (3700–5700 метров ниже уровня моря). Бактерии выявляли с помощью окрашивания флуоресцентным красителем SYBR Green I, который связывается с молекулами ДНК, и секвенирования 16S рибосомальной РНК.
К фрагментам субстрата с клетками добавляли питательные вещества и кислород в небольшой концентрации (1/16 от атмосферного). В молекулах нутриентов присутствовали изотопы углерода и азота 13C и 15N (они тяжелее, чем более распространенные 12C и 14N), и по тому, сколько таких изотопов окажется в клетках через определенные промежутки времени, оценивали, питаются ли бактерии, растут ли они, и если да, то насколько быстро.
Возраст образцов глины, который определяли по содержанию кобальта, составил от 4,3 до 101,5 миллионов лет. Практически во всех, в том числе в самых древних, обнаружили жизнеспособные организмы из групп Actinobacteria, Bacteroidetes, Firmicutes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Chloroflexi и некоторых других.
Лучше всего культивации поддавались аэробы: они питались и довольно быстро размножались. За 68 дней с начала инкубации некоторые увеличивали численность в десятки тысяч раз. При этом клетки в среднем в 3,09 раз быстрее поглощали «тяжелый» азот, чем углерод. От добавления конкретных органических веществ состав культур практически не зависел, зато зависел от времени, которое прошло с момента начала культивации. Также отмечается, что многие «ожившие» виды способны образовывать споры.
Авторы статьи отмечают, что возобновить жизнедеятельность удалось примерно у 99,1 процента найденных микроорганизмов. Очевидно, что у этих бактерий в их природных местообитаниях должна быть крайне низкая скорость обмена веществ, в противном случае они бы не «ожили». Интересно выяснить, как они адаптировались к «медленной жизни» и насколько сильно модифицировались за те 100 миллионов лет, пока на суше сменилась большая часть флоры и фауны. Скорее всего, и эволюционные процессы у них шли медленнее, чем у наземных бактерий.
Бактерии и археи способны выживать там, где остальные, как правило, существовать не могут. Например, в Иберийском пиритовом поясе нашли цианобактерии на глубине 607 метров — и это несмотря на то, что таким организмам нужно фотосинтезировать, а солнечный свет так глубоко практически не проникает. А в пустыне Атакама, где не хватает другого ключевого условия для фотосинтеза — воды, цианобактерии научились производить это вещество из гипса.
Светлана Ястребова
Бактерии научились инактививровать антибактериальную ДНК-гиразу
Немецкие ученые выяснили, что супербактерии, сохранявшие чувствительность к экспериментальному антибиотику альбицидину, защитились от него с помощью амплификации гена STM3175. Этот ген отвечает за регуляцию транскрипции малых молекул с доменом связывания, подобным ингибитору ДНК-гиразы — основы антибиотика альбицидина. Такое увеличение копии гена приводит к тысячекратному повышению уровня резистентности к препарату. Исследование опубликовано в PLoS Biology. В 2019 году почти пять миллионов человек погибло из-за бактерий, устойчивых к большинству известных антибиотиков, — супербактерий. По оценкам ученых к 2050 году это число увеличится в два раза. Основной причиной развития резистентности к противомикробным препаратам признано нерациональное их использование в медицине, ветеринарии и зоотехнии в сочетании с недостаточным пониманием механизмов бактериальной резистентности. Однако влияют и другие факторы: например, загрязнение атмосферы. Ученые постоянно ищут новые молекулы, которые были бы активны против супербактерий. Таким многообещающим соединением стал альбицидин — фитотоксичная молекула, вырабатываемая бактерией Xanthomonas albilineans, в исследованиях была эффективна против целого ряда супербактерий. Альбицидин ингибирует активность бактериальной ДНК-гиразы (топоизомеразы II) и эффективно действует на ковалентный комплекс ДНК и гиразы в крайне низких концентрациях. В нескольких исследованиях уже сообщалось о развитии резистентности к этой молекуле у некоторых бактерий, однако ее механизмы оставались не до конца выясненными. Команда ученых под руководством Маркуса Фульда (Marcus Fulde) из Свободного университета Берлина изучала механизмы резистентности к альбицидину, которая развилась у Salmonella typhimurium и Escherichia coli. Для этого они подвергали бактерии воздействию высоких концентраций более стабильного аналога антибиотика и наблюдали за ростом колоний в течение 24 часов. Из 90 протестированных клонов 14 показали рост в этих условиях. Секвенирование генома этих штаммов показало, что большинство (девять штаммов) несет мутации в гене tsx, ответственном за экспрессию нуклеозидспецифичного порина, что в 16 раз увеличивало минимальную ингибирующую концентрацию (MIC) антибиотика. Один из оставшихся пяти резистентных штаммов с интактным геном tsx демонстрировал более чем стократное повышение MIC, и анализ данных секвенирования его ДНК выявил амплификацию гена, приводящую к образованию 3-4 копий геномной области без однонуклеотидных полиморфизмов. При дополнительном анализе этого штамма ученые выяснили, что перекрывающаяся амплифицированная область содержит ген STM3175, который транскрибируется полицистронно в структуре оперона и N-концевой части qseB. Более тщательное изучение аминокислотной последовательности показало, что STM3175 состоит из 2 доменов: N-концевого AraC-подобного ДНК-связывающего домена и C-концевого GyrI-подобного лиганд-связывающего домена. Ученые обнаружили, что такая структура позволяет STM3175 связывать альбицидин с высокой аффинностью и инактивировать его. У разных бактерий обнаружились гомологи этого гена с теми же функциями, при этом на эффект других антибактериальных препаратов они не влияли. Знание нового механизма развития устойчивости к альбицидину позволит ученым разрабатывать новые способы модификации молекулы, чтобы обойти этот механизм. Ранее ученые обнаружили антибактериальную молекулу с широким спектром действия, которая не вызвала резистентности у микроорганизмов.